

3. Vector Autoregressive Moving Average (VARMA) Models

On-Line Supp. 3A. (MLE vs OLS) As we have previously seen in the Chapter, following the notation in Lütkepohl (2005), we can write (3.11) as

$$\mathbf{Y} = \mathbf{BZ} + \mathbf{U},$$

where $\mathbf{Y} \equiv [\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_T]$, $\mathbf{B} \equiv [\mathbf{a}_0, \mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_p]$, $\mathbf{U} \equiv [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_T]$, and $\mathbf{Z} \equiv [\mathbf{Z}_0, \mathbf{Z}_1, \dots, \mathbf{Z}_{T-1}]$ with $\mathbf{Z}_t \equiv [\mathbf{1}', \mathbf{y}'_{t-1}, \mathbf{y}'_{t-2}, \dots, \mathbf{y}'_{t-p+1}]'$.

The MLE of \mathbf{B} , which contains a constant term and the autoregressive coefficients, turns out to be $\hat{\mathbf{B}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{Y}$ which can be viewed as the sample analog of the population linear projection of \mathbf{Y} on \mathbf{Z} .

Therefore, the j th row of $\hat{\mathbf{B}}$ is

$$\hat{\mathbf{b}}_j = \left[\sum_t^T y_{jt} \mathbf{z}'_t \right] \left[\sum_t^T \mathbf{z}_t \mathbf{z}'_t \right]^{-1},$$

which is just the estimated coefficient vector from an OLS regression of y_{jt} on \mathbf{z}_t .

Thus, maximum likelihood estimates of the coefficients for the j th equation of a VAR are found by an OLS regression of y_{jt} on a constant term and p lags of all the variables in the system.

To verify this relation, first we have to consider that

$$\begin{aligned} & \sum_t^T [(y_t - \hat{\mathbf{B}}' \mathbf{z}_t)' \Sigma_u^{-1} (y_t - \hat{\mathbf{B}}' \mathbf{z}_t)] \\ &= \sum_t^T [(y_t - \hat{\mathbf{B}}' \mathbf{z}_t + \hat{\mathbf{B}}' \mathbf{z}_t - \mathbf{B}' \mathbf{z}_t)' \Sigma_u^{-1} (y_t - \hat{\mathbf{B}}' \mathbf{z}_t + \hat{\mathbf{B}}' \mathbf{z}_t - \mathbf{B}' \mathbf{z}_t)] \\ &= \sum_t^T [(\hat{\mathbf{u}}_t + (\hat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t)' \Sigma_u^{-1} (\hat{\mathbf{u}}_t + (\hat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t)], \end{aligned}$$

where the j th element of the vector $\hat{\mathbf{u}}_t$ is the sample residual for the observation t from an OLS regression of y_{jt} on \mathbf{z}_t :

$$\hat{\mathbf{u}}_t = y_t - \hat{\mathbf{B}}' \mathbf{z}_t.$$

It is worth noting that $\sum_t^T [(y_t - \hat{\mathbf{B}}' \mathbf{z}_t)' \Sigma_u^{-1} (y_t - \hat{\mathbf{B}}' \mathbf{z}_t)]$ can be expanded as

$$\begin{aligned} &= \sum_t^T \hat{\mathbf{u}}_t' \Sigma_u^{-1} \hat{\mathbf{u}}_t + \\ &+ 2 \sum_t^T \hat{\mathbf{u}}_t' \Sigma_u^{-1} (\hat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t + \sum_t^T \mathbf{z}_t' (\hat{\mathbf{B}} - \mathbf{B}) \Sigma_u^{-1} (\hat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t. \end{aligned}$$

The middle term in this equation is a scalar and therefore it remains unchanged by applying the “trace” operator:

$$\begin{aligned}
\sum_t^T \widehat{\mathbf{u}}_t' \Sigma_u^{-1} (\widehat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t &= \text{trace} \left[\sum_t^T \widehat{\mathbf{u}}_t' \Sigma_u^{-1} (\widehat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t \right] \\
&= \text{trace} \left[\sum_t^T \Sigma_u^{-1} (\widehat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t \widehat{\mathbf{u}}_t' \right] \\
&= \text{trace} \left[\Sigma_u^{-1} (\widehat{\mathbf{B}} - \mathbf{B})' \sum_t^T \mathbf{z}_t \widehat{\mathbf{u}}_t' \right].
\end{aligned}$$

An important condition to remember is that the sample residuals from an OLS regression are by construction orthogonal to the explanatory variables, meaning that $\sum_t^T \mathbf{z}_t \widehat{\mathbf{u}}_t' = 0$ for all j and so $\sum_t^T \mathbf{z}_t \widehat{\mathbf{u}}_t' = 0$.

Therefore, $\sum_t^T [(\mathbf{y}_t - \widehat{\mathbf{B}}' \mathbf{z}_t)' \Sigma_u^{-1} (\mathbf{y}_t - \widehat{\mathbf{B}}' \mathbf{z}_t)]$ simplifies to

$$= \sum_t^T \widehat{\mathbf{u}}_t' \Sigma_u^{-1} \widehat{\mathbf{u}}_t + \sum_t^T \mathbf{z}_t' (\widehat{\mathbf{B}} - \mathbf{B}) \Sigma_u^{-1} (\widehat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t.$$

Since Σ_u is a positive definite matrix, Σ_u^{-1} is as well. Thus, defining the vector \mathbf{z}_t^* as

$$\begin{aligned}
\mathbf{z}_t^* &\equiv (\widehat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t, \\
\sum_t^T \mathbf{z}_t' (\widehat{\mathbf{B}} - \mathbf{B}) \Sigma_u^{-1} (\widehat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t &= \sum_t^T [\mathbf{z}_t^*]' \Sigma_u^{-1} \mathbf{z}_t^*.
\end{aligned}$$

This is positive for any sequence $\{\mathbf{z}_t^*\}_t^T$ other than $\mathbf{z}_t^* = \mathbf{0}$ for all t . Thus, the smallest possible value that the resulting equation can take on is achieved when $\mathbf{z}_t^* = \mathbf{0}$ or when $\mathbf{B} = \widehat{\mathbf{B}}$.

Because $\sum_t^T \widehat{\mathbf{u}}_t' \Sigma_u^{-1} \widehat{\mathbf{u}}_t + \sum_t^T \mathbf{z}_t' (\widehat{\mathbf{B}} - \mathbf{B}) \Sigma_u^{-1} (\widehat{\mathbf{B}} - \mathbf{B})' \mathbf{z}_t$ is minimized by setting $\mathbf{B} = \widehat{\mathbf{B}}$, it follows that the likelihood function is maximized by setting $\mathbf{B} = \widehat{\mathbf{B}}$, establishing the claim that OLS regressions provide the maximum likelihood estimates of the coefficients of a vector autoregression.
