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On-­‐‑Line	
  Ex.5A.	
   We	
  use	
  daily	
  data	
  on	
  US	
  aggregate	
  excess	
  market	
  returns	
  ( )	
  obtained	
  as	
  the	
  difference	
  

between	
   CRSP	
   value-­‐‑weighted	
   stock	
   returns	
   (concerning	
   all	
   NYSE,	
   NASDAQ,	
   and	
  AMEX	
  
listed	
  stocks,	
  over	
  the	
  relevant	
  periods)	
  for	
  the	
  long	
  sample	
  period	
  Jan.	
  2,	
  1963	
  –	
  Dec.	
  31,	
  
2016,	
  for	
  a	
  total	
  of	
  13,594	
  observations.	
  In	
  particular,	
  we	
  specify	
  a	
  simple	
  Gaussian	
  AR(1)	
  
model	
  for	
  the	
  conditional	
  mean	
  function	
  and	
  a	
  Riskmetrics	
  model	
  for	
  the	
  conditional	
  vari-­‐‑
ance	
  function:	
  

	
  

The	
  conditional	
  mean	
  function	
  is	
   .	
  Using	
  E-­‐‑Views,	
  we	
  have	
  estimated	
  
by	
  ML	
  the	
  model	
  obtaining	
  the	
  following	
  estimates	
  (p-­‐‑values	
  are	
  in	
  parentheses	
  underneath	
  
the	
  corresponding	
  coefficient):	
  

	
  

	
  
Figure	
  5A.1	
  –	
  Plot	
  of	
  One-­‐‑Day	
  RiskMetrics	
  Volatility	
  Forecasts	
  for	
  US	
  Excess	
  Aggregate	
  Stock	
  Returns	
  
We	
  use	
   the	
  estimated	
  model	
   to	
   forecast	
   the	
  conditional	
   standard	
  deviation	
  of	
   the	
  excess	
  
stock	
  return	
  process,	
  since	
  

,	
  

so	
  that	
  it	
  is	
  natural	
  to	
  use	
   	
  as	
  a	
  forecast	
  of	
  volatility.	
  Figure	
  5A.1	
  shows	
  such	
  
forecasts.	
  
Once	
   more,	
   the	
   “law	
   of	
   the	
   0.94”	
   estimate	
   strikes:	
   almost	
   30	
   years	
   later,	
   we	
   find	
   that	
  

,	
  which	
  is	
  close	
  to	
  0.94	
  indeed.	
  We	
  move	
  one	
  step	
  further	
  and	
  test	
  this	
  law	
  on	
  a	
  
different	
  series	
  of	
  equity-­‐‑related	
  returns,	
   those	
  on	
  the	
  SMB	
  (“Small-­‐‑minus-­‐‑Big”)	
  portfolio	
  
that	
  goes	
  long	
  in	
  the	
  lowest	
  quintile	
  of	
  the	
  CRSP	
  universe	
  stocks	
  in	
  terms	
  of	
  market	
  value	
  
and	
  finances	
  that	
  position	
  by	
  shorting	
  the	
  highest	
  quintile	
  of	
  CRSP	
  stocks	
  when	
  sorted	
  by	
  
their	
  total	
  market	
  value.	
  ML	
  estimates	
  are	
  (p-­‐‑values	
  are	
  in	
  parentheses):	
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Strikingly,	
  even	
  though	
  the	
  portfolio	
  is	
  very	
  different	
  (just	
  think	
  this	
  is	
  a	
  long-­‐‑short	
  portfolio	
  
that	
  in	
  principle	
  has	
  no	
  or	
  small	
  net	
  beta	
  exposure	
  on	
  the	
  aggregate	
  market	
  portfolio),	
  we	
  
obtain	
  similar	
  parameter	
  estimates	
  and	
  also	
  in	
  this	
  case	
   	
  falls	
  very	
  close	
  to	
  the	
  
0.94	
  often	
  recommended	
  by	
  the	
  RiskMetrics	
  experts.	
  We	
  use	
  the	
  estimated	
  model	
  to	
  fore-­‐‑
cast	
  the	
  conditional	
  standard	
  deviation	
  of	
  the	
  excess	
  stock	
  return	
  process,	
  as	
  shown	
  below.	
  

	
  
Figure	
  5A.2	
  –	
  One-­‐‑Day	
  RiskMetrics	
  Volatility	
  Forecasts	
  for	
  SMB	
  Returns	
  

	
  	
  
	
  
	
  
	
  

On-­‐‑Line	
  Ex.	
  5B.	
   Here	
  we	
  would	
  like	
  to	
  compare	
  the	
  different	
  degree	
  of	
  exposure	
  to	
  asymmetries	
  of	
  different	
  
asset	
  classes.	
  To	
  this	
  purpose,	
  we	
  use	
  daily	
  excess	
  CRSP	
  equity	
  returns,	
  weekly	
  (negative)	
  
differences	
  in	
  10-­‐‑year	
  US	
  Treasury	
  rates,	
  and	
  monthly	
  US	
  equity	
  total	
  returns	
  from	
  Bloom-­‐‑
berg.	
  It	
  is	
  interesting	
  to	
  compare	
  the	
  results	
  from	
  the	
  first	
  and	
  the	
  third	
  series	
  to	
  investigate	
  
both	
  the	
  effects	
  of	
  the	
  frequency	
  at	
  which	
  a	
  series	
  is	
  sampled	
  and,	
  at	
  least	
  possibly,	
  the	
  im-­‐‑
pact	
  of	
  subtracting	
  short-­‐‑term	
  rates	
   from	
  equity	
   returns.	
  The	
  following	
   table	
  conducts	
  a	
  
step-­‐‑by-­‐‑step	
  model	
  specification	
  search	
  for	
  each	
  of	
  the	
  three	
  series	
  within	
  the	
  threshold-­‐‑
GARCH(p,	
  d,	
  q)	
  class.	
  In	
  the	
  light	
  of	
  earlier	
  evidence,	
  we	
  start	
  off	
  with	
  the	
  case	
  of	
  both	
  p	
  and	
  
q	
  being	
  positive,	
  i.e.,	
  we	
  rule	
  out	
  simpler	
  ARCH(p)	
  models.	
  

	
  
Table	
  5.B1	
  –Information	
  Criteria-­‐‑Based	
  Model	
  Selection	
  for	
  Different	
  Data	
  Sets	
  and	
  Frequencies	
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Conditional	
  standard	
  deviation	
  from	
  RiskMetrics

Conditional	
  
Mean	
  Model

Conditional	
  
Variance	
  Model p d q	
   Maximized	
  

Log-­‐‑Lik BIC Hannan-­‐‑
Quinn AIC

MA(1) Homeskedastic 0 0 0 -­‐‑19069.6 2.8070 2.8063 2.8059
MA(1) GARCH(1,1) 1 0 1 -­‐‑16255.1 2.3950 2.3932 2.3922
MA(1) T-­‐‑GARCH(1,1,1) 1 1 1 -­‐‑16103.9 2.3735 2.3713 2.3702
MA(1) T-­‐‑GARCH(2,1,1) 2 1 1 -­‐‑16102.3 2.3739 2.3714 2.3701
MA(1) T-­‐‑GARCH(2,2,1) 2 2 1 -­‐‑16091.2 2.3730 2.3700 2.3686
MA(1) T-­‐‑GARCH(2,2,2)** 2 2 2 -­‐‑16022.1 2.3635 2.3602 2.3586
MA(1) T-­‐‑GARCH(2,1,2) 2 1 2 -­‐‑16099.2 2.3742 2.3712 2.3698
MA(1) T-­‐‑GARCH(3,2,2)** 3 2 2 -­‐‑16035.8 2.3662 2.3626 2.3607

AR(1) Homeskedastic 0 0 0 1257.2 -­‐‑1.3744 -­‐‑1.3763 -­‐‑1.3774
AR(1) GARCH(1,1) 1 0 1 1424.7 -­‐‑1.5457 -­‐‑1.5536 -­‐‑1.5578
AR(1) T-­‐‑GARCH(1,1,1) 1 1 1 1425.1 -­‐‑1.5420 -­‐‑1.5515 -­‐‑1.5571
AR(1) T-­‐‑GARCH(2,1,1) 2 1 1 1426.7 -­‐‑1.5397 -­‐‑1.5511 -­‐‑1.5578
AR(1) T-­‐‑GARCH(2,2,1)** 2 2 1 1430.0 -­‐‑1.5391 -­‐‑1.5525 -­‐‑1.5603
AR(1) T-­‐‑GARCH(2,2,2)** 2 2 2 1430.8 -­‐‑1.5359 -­‐‑1.5512 -­‐‑1.5601
AR(1) T-­‐‑GARCH(2,1,2) 2 1 2 1427.0 -­‐‑1.5358 -­‐‑1.5492 -­‐‑1.5570
AR(1) T-­‐‑GARCH(3,2,2) 3 2 2 1430.0 -­‐‑1.5349 -­‐‑1.5502 -­‐‑1.5591

CER Homeskedastic 0 0 0 -­‐‑1394.4 5.8228 5.8175 5.8141
CER GARCH(1,1) 1 0 1 -­‐‑1379.6 5.8000 5.7786 5.7649
CER T-­‐‑GARCH(1,1,1) 1 1 1 -­‐‑1376.5 5.7998 5.7734 5.7563
CER T-­‐‑GARCH(2,1,1)** 2 1 1 -­‐‑1375.0 5.8065 5.7748 5.7543
CER T-­‐‑GARCH(2,2,1)** 2 2 1 -­‐‑1365.1 5.7782 5.7412 5.7173
CER T-­‐‑GARCH(2,2,2) 2 2 2 -­‐‑1365.2 5.7911 5.7488 5.7215
CER T-­‐‑GARCH(2,1,2) 2 1 2 -­‐‑1373.4 5.8125 5.7755 5.7516
CER T-­‐‑GARCH(3,2,2)** 3 2 2 -­‐‑1364.7 5.8019 5.7544 5.7236

**	
  =	
  some	
  of	
  the	
  ML	
  estimates	
  of	
  GARCH	
  coefficients	
  turned	
  out	
  to	
  be	
  negative

Daily	
  1963-­‐‑2016	
  Excess	
  Equity	
  Returns	
  from	
  CRSP

Weekly	
  1982-­‐‑2016	
  10-­‐‑year	
  Treasury	
  Yield	
  Changes

Monthly	
  1977-­‐‑2016	
  Equity	
  Returns
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The	
  results	
  are	
  in	
  some	
  ways	
  expected:	
  stock	
  return	
  data	
  contain	
  strong	
  evidence	
  of	
  a	
  need	
  
to	
  incorporate	
  asymmetries	
  in	
  a	
  GARCH	
  model;	
  bond	
  returns	
  data	
  do	
  not,	
  and	
  economically	
  
it	
  would	
  be	
  more	
  complex	
  to	
  find	
  any	
  justification	
  for	
  such	
  asymmetries.	
  On	
  the	
  opposite,	
  
the	
  frequency	
  of	
  the	
  data	
  does	
  not	
  seem	
  to	
  be	
  crucial:	
  stock	
  index	
  returns	
  data	
  contain	
  lev-­‐‑
erage	
  both	
  at	
  daily	
  and	
  monthly	
  frequency	
  and	
  over	
  two	
  quite	
  different	
  time	
  periods	
  (the	
  
former	
  is	
  considerably	
  longer,	
  also	
  including	
  1963-­‐‑1976).	
  Interestingly,	
  for	
  both	
  equity	
  data	
  
sets,	
  the	
  same,	
  rich	
  GARCH(2,2,2)	
  model	
  prevails.	
  Technically,	
  slightly	
  more	
  parsimonious	
  
GARCH(2,2,1)	
  models	
   prevail	
   in	
   terms	
  of	
  minimizing	
   the	
   information	
   criteria,	
   but	
   these	
  
models	
  are	
  characterized	
  by	
  a	
  few	
  negative	
  coefficients	
  that	
  make	
  them	
  unsuitable	
  to	
  prac-­‐‑
tical	
  uses.	
  This	
  tendency	
  of	
  relatively	
  large	
  GARCH	
  models	
  to	
  be	
  selected	
  by	
  (all)	
  standard	
  
information	
  criteria	
  is	
  something	
  relatively	
  novel	
  when	
  compared	
  to	
  the	
  empirical	
  finance	
  
literature,	
  possibly	
  due	
  to	
  the	
  fact	
  that	
  we	
  are	
  performing	
  these	
  estimations	
  30	
  years	
  later	
  
the	
  birth	
  of	
  the	
  original	
  GARCH	
  model,	
  so	
  that	
  much	
  longer	
  time	
  series	
  of	
  data	
  have	
  become	
  
available.	
  
To	
  give	
  an	
  idea	
  of	
  typical	
  estimates,	
   in	
  Figure	
  5.B1,	
  we	
  report	
  ML	
  estimates	
  and	
  plot	
  the	
  
forecasts	
  of	
  conditional	
  volatility	
  they	
  imply.	
  In	
  the	
  case	
  of	
  stock	
  index	
  returns,	
  we	
  also	
  com-­‐‑
pare	
  such	
  forecasts	
  with	
  those	
  that	
  a	
  symmetric	
  GARCH(1,1)	
  would	
  obtain.	
  P-­‐‑values	
  are	
  in	
  
parentheses	
  below	
  ML	
  estimates	
  (obtained	
  assuming	
  normality);	
  we	
  also	
  computed	
  and	
  re-­‐‑
port	
  long-­‐‑run	
  ergodic	
  volatilities	
  obtained	
  as	
  the	
  square	
  root	
  of	
  long-­‐‑run	
  variances.	
  

	
  
GARCH(2,2,2):	
  

	
  

	
   	
  
Panel	
  (a)	
  Daily	
  US	
  Equity	
  Excess	
  Returns	
  

	
  
	
  

GARCH(1,0,1):	
  
	
  

	
  

	
  
	
  
	
   	
  
Panel	
  (b)	
  Weekly	
  10-­‐‑year	
  Treasury	
  Returns	
  
	
  

GARCH(2,2,2)	
  

	
  

	
  
	
   	
  

Panel	
  (c)	
  Monthly	
  US	
  Equity	
  Returns	
  
Figure	
  5.B1	
  –Estimates	
  and	
  In-­‐‑Sample	
  Volatility	
  Forecasts	
  from	
  Alternative	
  GARCH	
  Models	
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While	
   in	
   panel	
   (a),	
   the	
   differences	
   between	
   plain	
   vanilla	
   GARCH(1,0,1)	
   and	
   a	
   richer	
  
GARCH(2,2,2)	
  with	
  two	
  lags	
  of	
  leverage	
  effects	
  are	
  modest,	
  in	
  panel	
  (c),	
  at	
  a	
  monthly	
  fre-­‐‑
quency,	
  these	
  become	
  much	
  more	
  visible.	
  Indeed,	
  in	
  panel	
  (a)	
  the	
  correlation	
  between	
  the	
  
two	
  sets	
  of	
  forecasts	
  is	
  0.96	
  vs.	
  0.83	
  in	
  panel	
  (c).	
  The	
  threshold	
  GARCH	
  forecasts	
  seem	
  to	
  
jiggle	
  around	
  the	
  symmetric	
  GARCH	
  one,	
  and	
  therefore	
  appear	
  “spikier”	
  in	
  both	
  directions,	
  
in	
  the	
  sense	
  there	
  are	
  a	
  few	
  months	
  in	
  the	
  1980s	
  characterized	
  by	
  predicted	
  volatility	
  well	
  
below	
  2%	
  per	
  month	
  that	
  could	
  not	
  be	
  forecast	
  from	
  the	
  smoother	
  GARCH(1,0,1).	
  Such	
  dif-­‐‑
ferences	
  are	
  presumably	
  due	
   to	
   the	
  fact	
   that	
  while	
   in	
  panel	
   (a)	
  both	
   the	
  standard	
  ARCH	
  
coefficients	
  are	
  small	
  and	
  fail	
  to	
  be	
  significant	
  while	
  the	
  two	
  asymmetric	
  ARCH	
  coefficients	
  
almost	
  exactly	
  cancel	
  out,	
  this	
  does	
  not	
  occur	
  in	
  panel	
  (c).	
  
	
  	
  
	
  
	
  

On-­‐‑Line	
  Ex.	
  5C.	
   Consider	
  a	
  t-­‐‑Student	
  GARCH(1,1)	
  model	
  with	
  fixed	
  known	
  parameters,	
  controlled	
  by	
  a	
  per-­‐‑
sistence	
  index	
  Δ≡α+β:	
  

	
  

Here,	
  we	
  have	
  parameterized	
  the	
  GARCH	
  process	
  in	
  such	
  a	
  way	
  that	
  1/9	
  of	
  the	
  total	
  persis-­‐‑
tence	
  comes	
  from	
  the	
  lagged	
  squared	
  shock,	
  ARCH-­‐‑type	
   	
  term,	
  and	
  8/9	
  come	
  from	
  lagged	
  
conditional	
  variance.	
  When	
  Δ=0.9,	
  this	
  corresponds	
  to	
  α=0.1	
  and	
  β=0.8	
  that	
  are	
  fairly	
  typ-­‐‑
ical	
  values	
  in	
  the	
  literature.	
  The	
  other	
  parameter	
  that	
  we	
  shall	
  be	
  experimenting	
  with	
  is,	
  of	
  
course,	
  ν.	
  We	
  now	
  compute	
  unconditional	
  and	
  conditional	
  excess	
  kurtosis	
  

,	
  

for	
  a	
  few	
  representative	
  values	
  of	
  Δ	
  and	
  ν,	
  reporting	
  results.	
  These	
  are	
  summarized	
  at	
  the	
  
bottom	
  of	
  the	
  example,	
  for	
  your	
  convenience.	
  When	
  Δ=0	
  (no	
  GARCH)	
  and	
  ν=4.01,	
  we	
  have	
  
𝐸𝑥𝐾𝑢𝑟𝑡(𝑅YZ[) = 300	
   and	
   𝐸𝑥𝐾𝑢𝑟𝑡Y(𝑅YZ[) = 300	
   because	
   excess	
   kurtosis	
   can	
   only	
   come	
  
from	
   the	
   t-­‐‑Student	
   shocks.	
   In	
   general,	
   when	
   Δ=0,	
  𝐸𝑥𝐾𝑢𝑟𝑡(𝑅YZ[) = 𝐸𝑥𝐾𝑢𝑟𝑡Y(𝑅YZ[) =

_
`ab
	
  

will	
   always	
   obtain	
   independently	
   of	
   ν>4.	
  When	
   Δ=0.99	
   (very	
   persistent	
   GARCH)	
   and	
  
ν=4.01,	
  we	
  have	
  𝐸𝑥𝐾𝑢𝑟𝑡(𝑅YZ[) ≃ 2,565	
  and	
  𝐸𝑥𝐾𝑢𝑟𝑡Y(𝑅YZ[) = 300:	
  in	
  this	
  case,	
  the	
  sources	
  
of	
  excess	
  kurtosis,	
  volatility	
  clustering	
  and	
  fat-­‐‑tailed	
  shocks	
  compound	
  to	
  give	
  massively	
  
thick	
   tails.	
   The	
   approximate	
   equality	
   is	
   used	
  here	
   because	
   the	
  unconditional	
   kurtosis	
   is	
  
computed	
  using	
  simulation	
  methods	
  with	
  100,000	
  independent	
  trials	
  (because	
  of	
  the	
  noto-­‐‑
rious	
  difficulty	
  in	
  estimating	
  excess	
  kurtosis	
  with	
  any	
  precision).	
  When	
  Δ=0.8	
  (persistent	
  
GARCH)	
  and	
  ν=9	
  (which	
  seems	
  typical	
  of	
  many	
  financial	
  series),	
  we	
  have	
  𝐸𝑥𝐾𝑢𝑟𝑡(𝑅YZ[) ≃
1.80	
  and	
  𝐸𝑥𝐾𝑢𝑟𝑡Y(𝑅YZ[) = 1.2,	
  which	
  means	
  that	
  a	
  persistent	
  GARCH	
  contributes	
  a	
  1/3	
  in-­‐‑
crease	
  in	
  excess	
  kurtosis	
  on	
  top	
  of	
  a	
  fat-­‐‑tailed	
  t-­‐‑Student.	
  Finally,	
  when	
  Δ=0.99	
  (an	
  extremely	
  
persistent	
  GARCH)	
  and	
  ν=20	
  (where	
  the	
  tails	
  of	
  the	
  t-­‐‑Student	
  stop	
  being	
  significantly	
  dif-­‐‑
ferent	
   from	
   a	
   normal	
   distribution),	
  we	
   have	
  𝐸𝑥𝐾𝑢𝑟𝑡(𝑅YZ[) ≃ 390	
   and	
  𝐸𝑥𝐾𝑢𝑟𝑡Y(𝑅YZ[) =
0.375;	
   this	
   configuration	
   gives	
   powerful	
   evidence	
   of	
   the	
   interaction	
   effects	
   between	
   the	
  
thick	
  tails	
  generated	
  by	
  GARCH	
  and	
  the	
  tails	
  of	
  the	
  marginal	
  density	
  that	
  characterizes	
  the	
  
assumed	
  t-­‐‑Student	
  shocks.	
  In	
  fact,	
  Δ	
  =	
  0.99	
  by	
  itself	
  but	
  under	
  a	
  Gaussian	
  distribution	
  (say,	
  
assuming	
   ν=9999)	
   does	
   not	
   generate	
   such	
   a	
   massive	
   excess	
   kurtosis:	
   𝐸𝑥𝐾𝑢𝑟𝑡(𝑅YZ[) ≃
23.2.	
  Therefore,	
  it	
  is	
  the	
  interaction	
  between	
  t-­‐‑Student	
  shocks	
  and	
  GARCH	
  persistence	
  that	
  
captures	
  empirically	
  relevant	
  excess	
  kurtosis.	
  
Here	
  the	
  danger	
  is	
  that	
  by	
  incorrectly	
  assuming	
  Gaussian	
  shocks	
  in	
  all	
  circumstances,	
  a	
  re-­‐‑
searcher	
  may	
  force	
  her	
  GARCH	
  model	
  to	
  express	
  too	
  high	
  a	
  persistence	
  just	
  because	
  implic-­‐‑
itly	
  the	
  parameter	
  ν	
  is	
  forced	
  to	
  diverge	
  to	
  infinity	
  while	
  the	
  data	
  would	
  often	
  “prefer”	
  some	
  
ν<20.	
  For	
  instance,	
  data	
  generated	
  by	
  a	
  mildly	
  persistent	
  process	
  with	
  mildly	
  fat	
  tails	
  (say,	
  
Δ=0.6	
   and	
   ν=15)	
   would	
   imply	
   𝐸𝑥𝐾𝑢𝑟𝑡(𝑅YZ[) ≃ 0.62	
   and	
   𝐸𝑥𝐾𝑢𝑟𝑡Y(𝑅YZ[) = 0.55.	
   If	
   we	
  
forced	
  the	
  shocks	
  to	
  be	
  drawn	
  from	
  a	
  Gaussian	
  distribution,	
  instead	
  we	
  would	
  have	
  to	
  resort	
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to	
   a	
   much	
   higher	
   persistence	
   of	
   Δ≅0.94,	
   to	
   obtain	
   𝐸𝑥𝐾𝑢𝑟𝑡(𝑅YZ[) ≃ 0.61	
  
while	
  𝐸𝑥𝐾𝑢𝑟𝑡Y(𝑅YZ[) = 0.	
  In	
  other	
  words,	
  persistence	
  has	
  to	
  be	
  inflated	
  from	
  0.6	
  to	
  0.94	
  
simply	
  to	
  match	
  the	
  fourth	
  moment	
  of	
  the	
  data,	
  regardless	
  of	
  the	
  false	
  view	
  of	
  the	
  nature	
  of	
  
the	
  process	
  that	
  this	
  implies.	
  

Δ	
   ν	
   	
   	
  

0	
   4.01	
   300	
   300  

0.99	
   4.01	
   2,565	
   300  

0.8	
   9	
   1.80	
   1.20  

0.99	
   20	
   390	
   0.375  

0.99	
   ∞	
   23.2	
   0	
  

0.6	
   15	
   0.62	
   0.55	
  

0.94	
   ∞	
   0.61	
   0	
  

	
  
	
  	
  

	
  
	
  

On-­‐‑Line	
  Ex.	
  5D.	
   Among	
  the	
  large	
  number	
  of	
  predetermined	
  variables	
  that	
  have	
  been	
  proposed	
  in	
  the	
  em-­‐‑
pirical	
  literature,	
  one	
  (family)	
  has	
  recently	
  acquired	
  considerable	
  importance	
  in	
  exercises	
  
aimed	
  at	
  forecasting	
  variance:	
  option	
  implied	
  volatilities,	
  and	
  in	
  particular	
  the	
  (square	
  of	
  
the)	
  CBOE's	
  (Chicago	
  Board	
  Options	
  Exchange)	
  VXO	
  and	
  VIX	
  indices	
  as	
  well	
  as	
  other	
  func-­‐‑
tions	
  and	
  transformations	
  of	
  the	
  same.	
  
The	
  VXO	
  represents	
  a	
  weighted,	
  average	
  implied	
  volatility	
  (IV)	
  computed	
  on	
  S&P	
  100	
  index	
  
options	
  and	
  offers	
  a	
   longer	
   time	
  series	
  vs.	
  VIX,	
   that	
   instead	
  concerns	
   implied	
  volatilities	
  
computed	
  on	
  S&P	
  500	
  index	
  options.	
  As	
  discussed	
  in	
  Poon	
  and	
  Granger	
  (2005),	
  IV	
  tends	
  to	
  
be	
   more	
   accurate	
   than	
   GARCH	
   and	
   related	
   models	
   at	
   predicting	
   future	
   variance,	
   even	
  
though	
  this	
  is	
  surprising	
  because	
  IV	
  is	
  normally	
  based	
  on	
  a	
  larger	
  and	
  timelier	
  information	
  
set	
  that	
  is	
  by	
  construction	
  forward	
  looking.	
  However,	
  options	
  are	
  written	
  on	
  a	
  limited	
  num-­‐‑
ber	
  of	
  assets	
  and	
  indices:	
  for	
  instance,	
  emerging	
  market	
  equity	
  and	
  bond	
  indices	
  and	
  small	
  
stocks	
  are	
  important	
  building	
  blocks	
  of	
  optimal	
  portfolios	
  but	
  there	
  are	
  no	
  options	
  written	
  
on	
  them.	
  So,	
   the	
  time-­‐‑series	
  models	
  covered	
  in	
  this	
  book,	
  although	
  inferior	
  to	
  option-­‐‑im-­‐‑
plied	
  models,	
  will	
  continue	
  to	
  play	
  an	
  important	
  role	
  going	
  forward.	
  
In	
  general,	
  models	
  that	
  use	
  explanatory	
  variables	
  to	
  capture	
  time-­‐‑variation	
  in	
  variance	
  are	
  
represented	
  as:	
  

	
   (5D.1)	
  
which	
  is	
  one	
  more	
  case	
  of	
  augmented	
  GARCH	
  and	
  in	
  which	
   	
  is	
  a	
  vector	
  of	
  predetermined	
  
variables	
  that	
  may	
  as	
  well	
  include	
  implied	
  volatility.	
  Note	
  that	
  because	
  this	
  volatility	
  model	
  
is	
  not	
  written	
  in	
  log-­‐‑exponential	
  form,	
  it	
  is	
  important	
  to	
  ensure	
  that	
  the	
  model	
  always	
  gen-­‐‑
erates	
  a	
  positive	
  variance	
  forecast,	
  which	
  will	
  require	
  that	
  restrictions—either	
  of	
  an	
  eco-­‐‑
nomic	
  type	
  or	
  at	
  least	
  in	
  the	
  form	
  of	
  mathematical	
  constraints	
  to	
  be	
  numerically	
  imposed	
  
during	
  estimation—must	
  be	
  satisfied,	
  to	
  ensure	
  that	
   	
  for	
  all	
  possible	
  values	
  of	
  
,	
  besides	
  the	
  usual	
  ω,	
  α,	
  β≥	
  0	
  (with	
  one	
  positive).	
  
When	
   	
  consists	
  of	
  implied	
  variance	
  (say	
  VXO	
  for	
  concreteness),	
  	
  

1( )tExKurt R + 1( )t tExKurt R +

2 2 2 2
1| | 1 1|( ) ,t t t t t t t tg zs w as bs+ - -= + + +X
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   (5D.2)	
  

then	
  there	
  are	
  interesting	
  implications	
  to	
  explore.	
  Assume	
  that	
  VXO	
  follows	
  a	
  stationary	
  au-­‐‑
toregressive	
   first-­‐‑order	
  process,	
   	
  with	
   white	
  noise.	
  The	
  expres-­‐‑
sion	
  for	
  the	
  unconditional	
  variance	
  remains	
  easy	
  to	
  derive	
  but	
  it	
  will	
  be	
  influenced	
  by	
  the	
  
fact	
  that	
  over	
  the	
  long-­‐‑run,	
  on	
  average,	
  also	
  VXO	
  can	
  be	
  taken	
  to	
  represent	
  a	
  predictor	
  of	
  
variance.	
  If	
  the	
  process	
  for	
  VXO	
  is	
  stationary,	
  we	
  know	
  that	
  0< 	
  and	
  from	
  

	
   (5D.3)	
  

which	
  is	
  finite	
  because	
   ,	
  we	
  have:	
  

(5D.4)	
  

One	
  may	
  actually	
  make	
  more	
  progress	
  by	
  imposing	
  economic	
  restrictions.	
  For	
  instance,	
  tak-­‐‑
ing	
  into	
  account	
  that,	
  if	
  the	
  options	
  markets	
  are	
  efficient,	
  then	
   	
  obtains,	
  
one	
  can	
  establish	
  a	
  further	
  connection	
  between	
  the	
  parameters	
  δ0	
  and	
  δ1	
  on	
  one	
  side,	
  and	
  
ω,	
  α,	
  and:1	
  

(5D.5)	
  

Because	
   	
  but	
  also	
   ,	
  we	
  derive	
  the	
  restriction	
  
that	
  

	
   (5D.6)	
  

should	
  hold,	
  which	
  is	
  an	
  interesting	
  and	
  testable	
  restriction.	
  
We	
  start	
  by	
  regressing	
  log-­‐‑gross	
  monthly	
  US	
  value-­‐‑weighted	
  returns	
  on	
  the	
  log	
  of	
  VXO	
  di-­‐‑
vided	
  by	
  1200.	
  The	
  latter	
  transformation	
  is	
  required	
  by	
  the	
  fact	
  that	
  since	
  1986,	
  CBOE	
  has	
  
been	
  reporting	
  VXO	
  as	
  a	
  percentage	
  annualized	
  volatility,	
  while	
  here	
  we	
  need	
  a	
  monthly	
  
series	
  comparable	
  to	
  the	
  log	
  of	
  gross	
  returns.	
  The	
  resulting	
  series	
  of	
  log-­‐‑monthly	
  VXO	
  data	
  
contains	
  however	
  a	
  unit	
  root	
  on	
  the	
  basis	
  of	
  an	
  augmented	
  Dickey-­‐‑Fuller	
  test	
  and	
  a	
  simple	
  
regression	
  of	
  log-­‐‑returns	
  on	
  long-­‐‑monthly	
  VXO	
  would	
  represent	
  an	
  unbalanced	
  regression	
  
that,	
  when	
  estimated	
  by	
  OLS	
  on	
  a	
  1986-­‐‑2016	
  sample,	
  gives:	
  

	
  

with	
  an	
  R-­‐‑square	
  of	
  6.93%.	
  Using	
   the	
   formula	
  of	
  Example	
  5.19,	
   the	
   resulting	
  RMSPE	
  for	
  
squared	
  monthly	
  returns	
  is	
  38.01.	
  For	
  comparison,	
  a	
  GARCH(1,1)	
  model,	
  gives	
  a	
  RMSPE	
  of	
  
39.45.	
  	
  
In	
  any	
  event,	
  we	
  also	
  proceed	
  to	
  estimate	
  a	
  balanced	
  predictive	
  regression:	
  

	
  

with	
  a	
   striking	
  R-­‐‑square	
  of	
  41.1%:	
   it	
   is	
  not	
   really	
  a	
  high	
   implied	
  volatility	
   that	
   forecasts	
  

                                                                                                                          
1	
  For	
  the	
  asset	
  pricing	
  buffs,	
   	
  may	
  present	
  some	
  problems,	
  as	
  VXO	
  (and	
  VIX)	
   is	
  

normally	
  calculated	
  under	
  the	
  risk-­‐‑neutral	
  measure	
  while	
   	
  refers	
  to	
  the	
  physical	
  measure.	
  
Strictly	
  speaking,	
  the	
  equality	
  only	
  holds	
  assuming	
  (at	
  least,	
  local)	
  risk-­‐‑neutrality.	
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negative	
  returns,	
  it	
  is	
  an	
  increasing	
  implied	
  volatility	
  that	
  does	
  so.	
  The	
  resulting	
  RMSPE	
  is	
  
interesting,	
  only	
  34.0.	
  
An	
  interesting	
  alternative	
  is	
  to	
  use	
  VXO	
  not	
  in	
  alternative	
  to	
  GARCH	
  but	
  along	
  with	
  GARCH:	
  

	
  

	
  
Figure	
  5.D1	
  –Improvement	
  in	
  In-­‐‑Sample	
  Forecasting	
  Accuracy	
  from	
  Using	
  Implied	
  Volatility	
  Predic-­‐‑

tions	
  
Even	
  though	
  the	
  GARCH	
  model	
  features	
  a	
  small	
  and	
  imprecisely	
  estimated	
  alpha	
  coefficient,	
  
the	
  resulting	
  RMSPE	
  is	
  low,	
  30.99	
  only,	
  reducing	
  by	
  almost	
  25%	
  the	
  RMSPE	
  of	
  a	
  plain-­‐‑vanilla	
  
GARCH	
  model.	
  This	
  much	
   is	
   the	
  value	
  of	
  using	
   implied	
  volatility	
   in	
  addition	
   to	
   time	
  series	
  
methods	
  in	
  variance	
  forecasting.	
  Figure	
  5.D1	
  shows	
  why	
  augmenting	
  a	
  standard	
  GARCH(1,1)	
  
model	
  with	
  past	
  VXO	
  values	
  yields	
  more	
  accurate	
  forecast	
  of	
  one-­‐‑month	
  ahead	
  squared	
  real-­‐‑
ized	
   returns.	
   Moreover,	
   the	
   scatter	
   plots	
   show	
   that	
   while	
   the	
   plain	
   vanilla	
   and	
   VXO-­‐‑aug-­‐‑
mented	
  predictions	
  are	
  very	
  similar	
  for	
  squared	
  values	
  between	
  0	
  and	
  40,	
  for	
  more	
  extreme	
  
values	
  the	
  GARCH	
  model	
  faces	
  limitations	
  in	
  predicting	
  spikes,	
  and	
  when	
  the	
  VXO	
  is	
  also	
  em-­‐‑
ployed,	
  this	
  occurs	
  less.	
  In	
  fact,	
  above	
  40,	
  GARCH	
  forecasts	
  stop	
  reacting	
  to	
  information,	
  while	
  
VXO	
  can	
  still	
  yield	
  predictions	
  in	
  excess	
  of	
  70,	
  which	
  was	
  very	
  useful	
  to	
  forecast	
  variance	
  dur-­‐‑
ing	
  the	
  Great	
  Financial	
  Crisis	
  and	
  then	
  again	
  in	
  2011.	
  
	
  	
  
	
  
	
  

On-­‐‑Line	
  Ex.	
  5E.	
   The	
  most	
   famous	
  NIC	
   functional	
   forms	
  are	
  derived	
  by	
  simply	
  extending	
   the	
  GARCH	
  NIC,	
  
	
   (where	
   )	
   to	
   a	
   family	
   of	
   volatility	
  models	
   pa-­‐‑

rameterized	
  by	
   ,	
   ,	
  and	
   	
  that	
  can	
  be	
  written	
  as	
  follows:	
  

	
   (5E.1)	
  

The	
  objective	
  is	
  then	
  to	
  estimate	
  the	
  parameters	
  ( ,	
   ,	
   ,	
  and	
  β)	
  of	
  models	
  with	
  structure:	
  
	
   (5E.2)	
  

One	
  can	
  retrieve	
  a	
  standard,	
  plain	
  vanilla	
  GARCH(1,1)	
  by	
  setting	
   ,	
   ,	
  and	
   .	
  
Another	
   important	
   case	
   that	
   we	
   have	
   already	
   encountered	
   in	
   Section	
   5.2.6,	
   the	
   NA-­‐‑
GARCH(1,1)	
  model,	
   that	
   can	
  be	
  obtained	
   from	
  (5E.1)	
  by	
  setting	
   	
  and	
   .	
  Under	
  

2
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these	
  restrictions,	
  the	
  NIC	
  becomes	
   	
  (squaring	
  an	
  absolute	
  
value	
  makes	
   the	
  absolute	
  value	
  operator	
   irrelevant,	
   i.e.,	
   )	
   and	
  an	
  asym-­‐‑
metry	
  derives	
  from	
  the	
  fact	
  that	
  when	
   ,	
  

	
  	
  	
  	
  (5E.3)	
  

in	
  words,	
  while	
  positive	
  standardized	
  errors	
  are	
  reduced	
  by	
   ,	
  negative	
  news	
  are	
  mag-­‐‑
nified	
  in	
  their	
  impact	
  on	
  subsequent	
  variance.	
  
	
  	
  
	
  
	
  

On-­‐‑Line	
  Ex.	
  5F.	
   Extending	
  Example	
  5.22,	
  we	
  also	
  compute	
  the	
  per-­‐‑week	
  cumulative	
  variance	
  forecasts	
  of	
  
approximate	
  5-­‐‑year	
  Treasury	
  note	
  returns	
  at	
  the	
  end	
  of	
  the	
  sample	
  for	
  horizons	
  H	
  that	
  vary	
  
between	
  1	
  week	
  and	
  the	
  end	
  of	
  2027.	
  We	
  also	
  estimate	
  a	
  IGARCH(1)	
  model	
  with	
  t-­‐‑Student	
  
innovations	
  and	
  proceed	
  to	
  compute	
  the	
  same	
  per-­‐‑week	
  cumulative	
  variance	
  forecasts.	
  The	
  
estimated	
  RiskMetrics	
  model	
  is:	
  

	
  

Figure	
  5F.1	
  compares	
  the	
  variance	
  forecasts	
  of	
  cumulative	
  returns	
  from	
  the	
  two	
  models.	
  As	
  
expected,	
  as	
  the	
  horizon	
  grows,	
  forecasts	
  from	
  a	
  stationary	
  GARCH(1,1)	
  stabilize	
  in	
  corre-­‐‑
spondence	
  to	
   ,	
  while	
  the	
  average,	
  per-­‐‑period	
  forecast	
  from	
  RiskMetrics	
  is	
  “stuck”	
  in	
  cor-­‐‑
respondence	
  to	
  the	
  most	
  recent	
  forecast,	
   .	
  

	
  
Figure	
  5F.1	
  –Comparing	
  Per-­‐‑Week	
  Average	
  Cumulative	
  Variance	
  Forecasts	
  from	
  t-­‐‑Student	
  Stationary	
  

GARCH(1,1)	
  and	
  RiskMetrics(1)	
  
Of	
  course,	
  if	
  were	
  to	
  repeat	
  this	
  experiment	
  in	
  correspondence	
  to	
  a	
  forecast	
  origin	
  at	
  which	
  

	
  we	
  would	
  find	
  a	
  monotone	
  declining	
  shape	
  of	
  the	
  GARCH(1,1)	
  prediction	
  as	
  a	
  
function	
  of	
  H.	
  
	
  	
  
	
  
	
  

On-­‐‑Line	
  Ex.	
  5G.	
   Consider	
  the	
  four	
  Fama-­‐‑French-­‐‑Carhart	
  factor	
  portfolios	
  often	
  used	
  in	
  asset	
  pricing	
  and	
  as-­‐‑
set	
  management.	
  For	
  each	
  of	
  the	
  value-­‐‑weighted	
  excess	
  market,	
  SMB,	
  HML,	
  and	
  momentum	
  
(these	
  were	
  all	
  previously	
  defined)	
  portfolio	
   returns,	
  we	
  have	
   the	
   following	
  sample	
  mo-­‐‑
ments	
  and	
  implied	
  MM	
  estimates	
  of	
  µμ,	
  σ,	
  and	
  ν	
  in	
  constant	
  mean,	
  homoskedastic	
  process	
  

,	
   :	
  
	
  

2
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Ptf.	
   Sample	
  Mean	
   Sample	
  Vol.	
   Sample	
  Ex.	
  	
  Kurt.	
   μ	
   σ	
   ν	
  

Market	
   0.025	
   0.986	
   15.717	
   0.025	
   0.727	
   4.382	
  

SMB	
   0.007	
   0.522	
   24.457	
   0.007	
   0.402	
   4.245	
  

HML	
   0.019	
   0.499	
   10.856	
   0.019	
   0.374	
   4.553	
  

Mom	
   0.030	
   0.702	
   14.799	
   0.030	
   0.519	
   4.405	
  
	
  
Interestingly,	
  all	
  portfolios	
  display	
  massive	
  excess	
  kurtosis,	
  hence	
  they	
  cannot	
  be	
  modeled	
  
as	
  having	
  a	
  marginal	
  normal	
  distribution	
  and	
  as	
  a	
  result	
  all	
  the	
  estimated	
  MM	
  values	
  for	
  ν	
  
fall	
  between	
  4.25	
  and	
  4.55.	
  
	
  	
  
	
  
	
  

On-­‐‑Line	
  Supp.	
  5H.	
   How	
  do	
  we	
  proceed	
  to	
  maximize	
  the	
   log-­‐‑likelihood	
  function	
  of	
  a	
  sample	
  by	
  selecting	
  the	
  
optimizing	
  parameters,	
  subject	
  to	
   ?	
  Appropriate	
  methods	
  of	
  numerical,	
  constrained	
  
optimization	
   need	
   to	
   be	
   implemented:	
   this	
   is	
  what	
   packages	
   such	
   as	
  Matlab,	
   Gauss,	
   E-­‐‑
Views,	
  or	
  Stata	
  are	
  for.	
  For	
  instance	
  (i.e.,	
  other,	
  better	
  but	
  more	
  complex	
  methods	
  are	
  feasi-­‐‑
ble),	
   Newton's	
   method	
   makes	
   use	
   of	
   the	
   Hessian,	
   which	
   is	
   a	
   	
   matrix	
  

	
  that	
  collects	
  second	
  partial	
  derivatives	
  of	
  the	
  log-­‐‑likelihood	
  function	
  
with	
  respect	
  to	
  each	
  of	
  the	
  parameters	
  in	
   .	
  Similarly	
  the	
   	
  gradient	
   	
  col-­‐‑
lects	
  the	
  first	
  partial	
  derivatives	
  of	
  the	
  log-­‐‑likelihood	
  function	
  with	
  respect	
  to	
  each	
  of	
  the	
  

elements	
  in	
   .	
  Let	
   	
  denote	
  the	
  value	
  of	
  the	
  vector	
  of	
  estimates	
  at	
  step	
  j	
  of	
  the	
  algorithm,	
  

and	
  let	
   	
  and	
   	
  denote,	
  respectively,	
  the	
  gradient	
  and	
  the	
  Hessian	
  evaluated	
  

at	
   .	
  Then	
  the	
  fundamental	
  equation	
  to	
  update	
  the	
  estimates	
  according	
  to	
  Newton's	
  algo-­‐‑
rithm	
  is:	
  

	
   (5H.1)	
  

Because	
  the	
  log-­‐‑likelihood	
  function	
  is	
  to	
  be	
  maximized,	
  the	
  Hessian	
  should	
  be	
  negative	
  def-­‐‑

inite,	
  at	
  least	
  when	
   	
  is	
  sufficiently	
  near	
   .	
  This	
  ensures	
  that	
  this	
  step	
  is	
  in	
  an	
  uphill	
  direc-­‐‑
tion.	
  The	
  maximization	
  process	
  therefore	
  proceeds	
  through	
  the	
  following	
  steps:	
  

§   Set	
  an	
  initial	
  vector	
  of	
  parameters,	
   ,	
  and	
  compute	
    and .	
  

§   Compute	
   the	
  new	
  vector	
  of	
  estimated	
  parameters	
   	
  

and	
  therefore	
   	
  and	
   ;	
  check	
  that	
  the	
  Euclidean	
  norm	
  ||
||	
  (in	
  words,	
  this	
  is	
  the	
  square	
  root	
  of	
  the	
  sum	
  of	
  all	
  squared	
  differences	
  between	
  the	
  
elements	
  of	
   	
  and	
   )	
  is	
  not	
  inferior	
  to	
  some	
  small	
  threshold	
  parameter	
  (typically,	
  
10-­‐‑5).	
  

§   Update	
   the	
   vector	
   of	
   parameter	
   estimates	
   to	
   	
   and	
  

check	
  that	
  the	
  norm	
  || ||	
  is	
  not	
  inferior	
  to	
  the	
  threshold	
  parameter.	
  
§   Continue	
  (unless	
  a	
  maximum	
  number	
  of	
  iteration	
  has	
  been	
  exceeded,	
  but	
  with	
  fast	
  

computers	
  often	
  thousands	
  of	
  iterations	
  are	
  affordable	
  in	
  the	
  space	
  of	
  a	
  few	
  minutes	
  
only)	
  until	
   	
   is	
   such	
   that	
   || ||	
   falls	
  below	
   the	
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fixed	
   convergence	
   threshold,	
   that	
   signals	
   that	
   the	
   optimizing	
   vector	
   has	
   stopped	
  
changing.	
  

§   Set	
   .	
  
Numerical	
  optimization	
  is	
  a	
  very	
  sensitive	
  business;	
  a	
  myriad	
  of	
  choices	
  are	
  considered	
  to	
  
be	
  crucial	
  to	
  obtain	
  “reliable”	
  results,	
  such	
  as	
  the	
  initial	
  value	
   ,	
  the	
  convergence	
  tolerance	
  
criterion,	
  and	
  often	
  how	
  much	
  the	
  algorithm	
  is	
  supposed	
  to	
  “travel”	
  in	
  the	
  direction	
  indi-­‐‑
cated	
  by	
  the	
  inverse	
  Hessian	
  matrix,	
  i.e.,	
  the	
  coefficient	
  τ	
  in	
  the	
  iteration	
  in	
  (5.H1),	
  general-­‐‑
ized	
  to	
  read	
  as	
   , where τ	
  >	
  0	
  (clearly	
  a	
  τ	
  <	
  1	
  “dims”	
  the	
  step	
  

taken	
  in	
  direction	
   ,	
  while	
  a	
  τ	
  >	
  1	
  acts	
  as	
  a	
  multiplier).	
  Reliability	
  here	
  is	
  often	
  

evidence	
  or	
  even	
  taken	
  to	
  offer	
  some	
  guarantee	
  that	
   	
  truly	
  represents	
  a	
  global	
  (as	
  
opposed	
  to	
  local)	
  maximizer	
  of	
  the	
  log-­‐‑likelihood	
  function	
  and	
  as	
  such	
  it	
  is	
  unique,	
  as	
  as-­‐‑
sumed.	
  For	
  instance,	
  just	
  to	
  get	
  hard	
  evidence	
  on	
  this	
  aspect,	
  it	
  is	
  often	
  advised	
  to	
  start	
  off	
  
the	
  maximization	
  algorithm	
  in	
  correspondence	
  of	
  a	
  range	
  of	
  alternative	
  starting	
  values	
  and	
  
then	
  retain,	
  for	
  the	
  true	
  and	
  often	
  lengthy	
  iterative	
  Newton-­‐‑style	
  search,	
  the	
  most	
  promising	
  
one(s).	
  
Other	
  numerical	
  optimization	
  methods	
  are	
  of	
  course	
  possible.	
  A	
  few	
  of	
  them	
  are	
  faster	
  than	
  
Newton’s	
  method	
  because	
  they	
  replace	
  the	
  Hessian	
  matrix	
  with	
  cheaper	
  to	
  compute	
  nega-­‐‑
tive	
  definite	
   	
  matrices,	
  for	
  instance	
   ,	
  which	
  is	
  negative	
  
definite	
  by	
  construction,	
  unless	
   ,	
  which	
  would	
  instead	
  show	
  that	
  a	
  stationary	
  
point	
  has	
  been	
  reached.	
  The	
  advantage	
  of	
  this	
  expression	
  is	
  that	
  it	
  only	
  requires	
  calculation	
  
(often	
  numerically)	
  of	
  first-­‐‑order	
  derivatives.	
  Moreover,	
  our	
  simplified	
  illustration	
  of	
  New-­‐‑
ton’s	
   method	
   ignores	
   the	
   role	
   played	
   by	
   constraints,	
   that	
   may	
   interfere	
   with	
   setting	
  

,	
  when	
  the	
  constraints	
  are	
  violated.	
  
	
  	
  
	
  
	
  

On-­‐‑Line	
  Ex.	
  5I.	
   As	
  an	
  example	
  of	
  calculations	
  of	
  confidence	
  intervals	
  based	
  on	
  the	
  last	
  set	
  of	
  ML	
  estimates	
  
in	
  Example	
  5.24,	
  we	
  have:	
  

	
  
Table	
  5I.1	
  –90%,	
  95%,	
  and	
  99%	
  Asymptotic	
  Confidence	
  Intervals	
  from	
  t-­‐‑Student	
  MA(1),	
  Thresh-­‐‑

old	
  GARCH(1,1,1)	
  for	
  US	
  Excess	
  Stock	
  Returns	
  
Clearly,	
  none	
  of	
  the	
  intervals	
  contains	
  zero	
  as	
  a	
  lower	
  bound,	
  and	
  this	
  derives	
  from	
  the	
  fact	
  
that	
  all	
  coefficients	
  had	
  been	
  found	
  to	
  be	
  significant	
  with	
  p-­‐‑values	
  lower	
  than	
  1%	
  early	
  on	
  
(note	
  that	
  here	
  the	
  widest	
  interval	
  reported	
  is	
  computed	
  at	
  confidence	
  of	
  1–p=99%).	
  It	
  is	
  
also	
  useful	
  to	
  look	
  at	
  the	
  joint,	
  pairwise	
  confidence	
  ellipses	
  of	
  the	
  estimated	
  ML	
  parame-­‐‑
ters	
  considered	
  in	
  pairs,	
  as	
  we	
  do	
  in	
  Figure	
  5I.1	
  for	
  the	
  GARCH	
  related	
  parameters	
  
and	
   	
  (the	
  remaining	
  parameters	
  have	
  been	
  dropped	
  just	
  to	
  keep	
  the	
  figure	
  readable).	
  
To	
  familiarize	
  with	
  a	
  (1–p)%	
  confidence	
  ellipse,	
  consider	
  the	
  top,	
  rightmost	
  panel	
  of	
  Figure	
  
5I.1,	
  where	
  we	
  have	
  the	
  95%	
  ellipse	
  involving	
  the	
  persistence	
  ( )	
  index	
  of	
  the	
  t-­‐‑
Student	
   threshold	
   GARCH(1,1,1)	
   model	
   and	
   the	
   “number	
   of	
   degrees-­‐‑of-­‐‑freedom”	
  

ˆ ˆML
T j=q q

0q̂

1
ˆ ˆ
j j+ = -q q 1 ˆ ˆH ( )[ ( )/ ]j jt - ¶ ¶q q q

ˆ[ ( )/ ]j¶ ¶q q
ˆ ˆML
T j=q q

K K´ ( ) [ ( )/ ][ ( )/ ]'OPG º - ¶ ¶ ¶ ¶q q q q q
( )/¶ ¶ =q q 0

1
1 1

ˆ ˆ ˆH ( )j j j
-

- -= -q q q 1
ˆ[ ( )/ ]j-¶ ¶q q

Coefficient 99%	
  CI 95%	
  CI 90%	
  CI Coefficient 90%	
  CI 95%	
  CI 99%	
  CI

k0 	
  0.022 	
  0.026 	
  0.028 	
  0.039 	
  0.049 	
  0.051 	
  0.055
k1 	
  0.099 	
  0.105 	
  0.108 	
  0.122 	
  0.137 	
  0.140 	
  0.145
w 	
  0.004 	
  0.005 	
  0.005 	
  0.007 	
  0.008 	
  0.008 	
  0.009
a 	
  0.012 	
  0.014 	
  0.016 	
  0.024 	
  0.032 	
  0.033 	
  0.036
d 	
  0.092 	
  0.096 	
  0.099 	
  0.111 	
  0.124 	
  0.126 	
  0.131
b 	
  0.903 	
  0.906 	
  0.907 	
  0.914 	
  0.922 	
  0.923 	
  0.926
n 	
  6.712 	
  6.978 	
  7.114 	
  7.823 	
  8.532 	
  8.668 	
  8.933

, 	
   , 	
   , 	
  a d b
n

0.5a d b+ +
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parameter,	
   .	
  The	
  region	
  inside	
  the	
  circular	
  ellipse	
  includes	
  the	
  infinite	
  combinations	
  of	
  
the	
  persistence	
  index	
  and	
  of	
   	
  that	
  can	
  be	
  assigned	
  a	
  confidence	
  of	
  0.95,	
  i.e.,	
  in	
  a	
  frequentist	
  
sense,	
  that	
  shall	
  characterize	
  the	
  parameter	
  estimates	
  in	
  95%	
  of	
  all	
  samples	
  of	
  a	
  size	
  iden-­‐‑
tical	
  to	
  the	
  sample	
  that	
  has	
  been	
  used	
  to	
  obtain	
  parameter	
  estimates	
  in	
  this	
  example.	
  For	
  
instance,	
  a	
  combination	
  of	
  a	
  persistence	
  index	
  of	
  0.998	
  and	
  of	
  a	
  value	
  for	
   	
  that	
  equals	
  9,	
  
should	
  occur	
  rather	
  infrequently.	
  The	
  dot	
  at	
  the	
  center	
  of	
  the	
  ellipse—in	
  this	
  case	
  at	
  approx-­‐‑
imately	
  a	
  persistence	
  index	
  of	
  0.994	
  and	
  a	
  value	
  of	
   	
  equal	
  to	
  7.9—corresponds	
  to	
  the	
  point	
  
estimates	
   reported	
   in	
  Table	
  5I.1.	
  The	
  four	
  dotted	
   lines	
   represent	
  for	
  each	
  pair,	
   the	
  same	
  
95%	
  confidence	
  intervals	
  in	
  Table	
  5I.1,	
  for	
  instance	
   	
  falls	
  with	
  probability	
  95%	
  between	
  
6.9	
  and	
  8.7;	
  interestingly,	
  the	
  persistence	
  index	
  is	
  95%	
  of	
  the	
  time	
  between	
  0.989	
  and	
  0.998,	
  
i.e.,	
  it	
  is	
  estimated	
  to	
  be	
  high	
  and	
  in	
  excess	
  of	
  0.99	
  with	
  considerable	
  precision.	
  Finally,	
  per-­‐‑
fectly	
  round	
  ellipses	
  indicate	
  that	
  there	
  is	
  approximate	
  zero	
  correlation	
  between	
  ML	
  esti-­‐‑
mates	
  in	
  pair;	
  ellipses	
  that	
  are	
  “slanted”	
  to	
  the	
  left	
  (right),	
  like	
  the	
  case	
  of	
  the	
  persistence	
  
index	
  and	
   ,	
  indicate	
  the	
  existence	
  of	
  negative	
  (positive)	
  correlation.	
  

	
  
Figure	
  5I.1	
  –	
  95%	
  Confidence	
  Ellipses	
  for	
  Pairs	
  of	
  ML	
  Parameter	
  Estimates	
  from	
  t-­‐‑Student	
  MA(1),	
  

Threshold	
  GARCH(1,1,1)	
  for	
  US	
  Excess	
  Stock	
  Returns	
  
The	
  Figure	
  ends	
  up	
  showing	
  the	
  existence	
  of	
  a	
  rather	
  strong	
  and	
  negative	
  correlation	
  be-­‐‑
tween	
  ML	
  estimates	
  of	
  α	
  and	
  δ	
  (which	
  is	
  expected,	
  given	
  their	
  similar	
  meaning	
  and	
  inter-­‐‑
pretation),	
  and	
  also	
  α	
  and	
  β.	
  As	
  already	
  remarked,	
  fatter-­‐‑tailed	
  distributions	
  for	
  the	
  errors	
  
tend	
  to	
  lead	
  to	
  higher	
  and	
  not	
  lower	
  estimates	
  of	
  the	
  GARCH	
  persistence,	
  that	
  is	
  contrary	
  to	
  
what	
  sometimes	
  thought.	
  
	
  	
  

On-­‐‑Line	
  Ex.	
  5L.	
   Consider	
  again	
  the	
  simple	
  Gaussian	
  MA(1)-­‐‑threshold	
  GARCH(1,1)	
  estimated	
  in	
  Example	
  5I	
  
above	
  on	
  daily	
  US	
  excess	
  stock	
  returns:	
  

	
  

,	
  

The	
  Jarque-­‐‑Bera	
  test	
  on	
  the	
  standardized	
  residuals	
  from	
  this	
  model	
  is	
   =	
  4095.1	
  which	
  
commands	
   a	
   p-­‐‑value	
   of	
   zero.	
   The	
   model	
   as	
   such	
   is	
   rejected	
   and	
   the	
   assumption	
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  can	
  at	
  most	
  be	
  retained	
  in	
  a	
  QMLE	
  framework,	
  i.e.,	
  only	
  as	
  an	
  approxima-­‐‑
tion.	
  The	
  following	
  histogram	
  and	
  nonparametric	
  (kernel)	
  density	
  estimator	
  let	
  us	
  appreci-­‐‑
ate	
  what	
  the	
  key	
  source	
  of	
  non-­‐‑normality	
  is	
  in	
  the	
  case	
  of	
  these	
  data:	
  even	
  though	
  the	
  excess	
  
kurtosis	
  ends	
  up	
  exceeding	
  2.5,	
   the	
  sample	
  skewness	
  of	
  -­‐‑0.40	
  appears	
  to	
  be	
  too	
  large	
  for	
  
normality	
  to	
  fare	
  well.	
  

	
  
Figure	
  5L.1	
  –	
  Histogram	
  and	
  Key	
  Summary	
  Statistics	
  for	
  Standardized	
  Residuals	
  Obtained	
  from	
  a	
  

Gaussian	
  threshold	
  GARCH(1,1,1)	
  
In	
  case	
  you	
  are	
  wondering,	
  we	
  have	
  estimated	
  and	
  analyzed	
  the	
  normality	
  of	
  standardized	
  
residuals	
  from	
  the	
  entire	
  range	
  of	
  models	
  featured	
  in	
  the	
  examples	
  that	
  appear	
  in	
  Chapter	
  
5	
  with	
  references	
  to	
  this	
  particular	
  series,	
  finding	
  results	
  that	
  are	
  not	
  qualitatively	
  different	
  
from	
  Figure	
  5L.1:	
  it	
  is	
  hard	
  for	
  textbook	
  GARCH	
  models	
  to	
  capture	
  the	
  thick	
  tails	
  of	
  the	
  data,	
  
especially	
  the	
  left	
  tail	
  that	
  therefore	
  commands	
  a	
  large	
  and	
  statistically	
  significant	
  negative	
  
skewness.	
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Series:	
  Standardized	
  Residuals
Sample	
  1963	
  -­‐‑	
  2016
Observations	
  13594

Mean	
  	
  	
  	
  	
  	
   -­‐‑0.006117
Median	
  	
   	
  0.021961
Maximum	
   	
  4.792783
Minimum	
   -­‐‑10.49168
Std.	
  Dev.	
  	
   	
  0.999731
Skewness	
  	
   -­‐‑0.401410
Kurtosis	
  	
   	
  5.566180

Jarque-­‐‑Bera 	
  4095.078
Probability 	
  0.000000


