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We use daily data on US aggregate excess market returns ( x,,, ) obtained as the difference

between CRSP value-weighted stock returns (concerning all NYSE, NASDAQ, and AMEX
listed stocks, over the relevant periods) for the long sample period Jan. 2, 1963 - Dec. 31,
2016, for a total of 13,594 observations. In particular, we specify a simple Gaussian AR(1)
model for the conditional mean function and a Riskmetrics model for the conditional vari-
ance function:
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The conditional mean function is z,(¢,,4,) = ¢, + ¢ x,. Using E-Views, we have estimated

by ML the model obtaining the following estimates (p-values are in parentheses underneath
the corresponding coefficient):
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Figure 5A.1 - Plot of One-Day RiskMetrics Volatility Forecasts for US Excess Aggregate Stock Returns
We use the estimated model to forecast the conditional standard deviation of the excess
stock return process, since
Var [x,..]1=¢ +¢Var [x ]+ Var [s,.,]= +1|t’

\ /Jm't as a forecast of volatility. Figure 5A.1 shows such

so that it is natural to use o, ,, =

forecasts.
Once more, the “law of the 0.94” estimate strikes: almost 30 years later, we find that

A= 0.936, which is close to 0.94 indeed. We move one step further and test this law on a
different series of equity-related returns, those on the SMB (“Small-minus-Big”) portfolio
that goes long in the lowest quintile of the CRSP universe stocks in terms of market value
and finances that position by shorting the highest quintile of CRSP stocks when sorted by
their total market value. ML estimates are (p-values are in parentheses):
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Strikingly, even though the portfolio is very different (just think this is a long-short portfolio
that in principle has no or small net beta exposure on the aggregate market portfolio), we

obtain similar parameter estimates and also in this case A =0.935 falls very close to the
0.94 often recommended by the RiskMetrics experts. We use the estimated model to fore-
cast the conditional standard deviation of the excess stock return process, as shown below.
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Figure 5A.2 - One-Day RiskMetrics Volatility Forecasts for SMB Returns

On-Line Ex. 5B. Here we would like to compare the different degree of exposure to asymmetries of different
asset classes. To this purpose, we use daily excess CRSP equity returns, weekly (negative)
differences in 10-year US Treasury rates, and monthly US equity total returns from Bloom-
berg. Itis interesting to compare the results from the first and the third series to investigate
both the effects of the frequency at which a series is sampled and, at least possibly, the im-
pact of subtracting short-term rates from equity returns. The following table conducts a
step-by-step model specification search for each of the three series within the threshold-
GARCH(p, d, q) class. In the light of earlier evidence, we start off with the case of both p and

q being positive, i.e., we rule out simpler ARCH(p) models.
Conditional Conditional Maximized Hannan-
Mean Model Variance Model P d 1 Log-Lik BIC Quinn Alc

Daily 1963-2016 Excess Equity Returns from CRSP

MA(1) Homeskedastic 0 0 0 -19069.6 2.8070 2.8063 2.8059
MA(1) GARCH(1,1) 1 0 1 -16255.1  2.3950 23932 2.3922
MA(1) T-GARCH(1,1,1) 1 1 1 -16103.9 2.3735 2.3713 2.3702
MA(1) T-GARCH(2,1,1) 2 1 1 -16102.3 2.3739 2.3714 2.3701
MA(1) T-GARCH(2,2,1) 2 2 1 -16091.2 2.3730 2.3700 2.3686
MA(1) T-GARCH(2,2,2)** 2 2 2 -16022.1 2.3635 2.3602 2.3586
MA(1) T-GARCH(2,1,2) 2 1 2 -16099.2 2.3742 2.3712 2.3698
MA(1) T-GARCH(3,2,2)** 3 2 2 -16035.8 2.3662 2.3626 2.3607
Weekly 1982-2016 10-year Treasury Yield Changes
AR(1) Homeskedastic 0 0 0 1257.2 -1.3744 -1.3763 -1.3774
AR(1) GARCH(1,1) 1 0 1 1424.7 -1.5457 -1.5536 -1.5578
AR(1) T-GARCH(1,1,1) 1 1 1 1425.1 -1.5420 -1.5515 -1.5571
AR(1) T-GARCH(2,1,1) 2 1 1 1426.7 -1.5397 -1.5511 -1.5578
AR(1) T-GARCH(2,2,1)** 2 2 1 1430.0 -1.5391 -1.5525 -1.5603
AR(1) T-GARCH(2,2,2)** 2 2 2 1430.8 -1.5359 -1.5512 -1.5601
AR(1) T-GARCH(2,1,2) 2 1 2 1427.0 -1.5358 -1.5492 -1.5570
AR(1) T-GARCH(3,2,2) 3 2 2 1430.0 -1.5349 -1.5502  -1.5591
Monthly 1977-2016 Equity Returns
CER Homeskedastic 0 0 0 -1394.4 5.8228 5.8175 5.8141
CER GARCH(1,1) 1 0 1 -1379.6 5.8000 5.7786 5.7649
CER T-GARCH(1,1,1) 1 1 1 -1376.5 5.7998 5.7734 5.7563
CER T-GARCH(2,1,1)** 2 1 1 -1375.0 5.8065 5.7748 5.7543
CER T-GARCH(2,2,1)** 2 2 1 -1365.1 5.7782 5.7412 5.7173
CER T-GARCH(2,2,2) 2 2 2 -1365.2 5.7911 5.7488 5.7215
CER T-GARCH(2,1,2) 2 1 2 -1373.4 5.8125 5.7755 5.7516
CER T-GARCH(3,2,2)** 3 2 2 -1364.7 5.8019 5.7544 5.7236

** = some of the ML estimates of GARCH coefficients turned out to be negative

Table 5.B1 -Information Criteria-Based Model Selection for Different Data Sets and Frequencies
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The results are in some ways expected: stock return data contain strong evidence of a need
to incorporate asymmetries in a GARCH model; bond returns data do not, and economically
it would be more complex to find any justification for such asymmetries. On the opposite,
the frequency of the data does not seem to be crucial: stock index returns data contain lev-
erage both at daily and monthly frequency and over two quite different time periods (the
former is considerably longer, also including 1963-1976). Interestingly, for both equity data
sets, the same, rich GARCH(2,2,2) model prevails. Technically, slightly more parsimonious
GARCH(2,2,1) models prevail in terms of minimizing the information criteria, but these
models are characterized by a few negative coefficients that make them unsuitable to prac-
tical uses. This tendency of relatively large GARCH models to be selected by (all) standard
information criteria is something relatively novel when compared to the empirical finance
literature, possibly due to the fact that we are performing these estimations 30 years later
the birth of the original GARCH model, so that much longer time series of data have become
available.

To give an idea of typical estimates, in Figure 5.B1, we report ML estimates and plot the
forecasts of conditional volatility they imply. In the case of stock index returns, we also com-
pare such forecasts with those that a symmetric GARCH(1,1) would obtain. P-values are in
parentheses below ML estimates (obtained assuming normality); we also computed and re-
port long-run ergodic volatilities obtained as the square root of long-run variances.
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While in panel (a), the differences between plain vanilla GARCH(1,0,1) and a richer
GARCH(2,2,2) with two lags of leverage effects are modest, in panel (c), at a monthly fre-
quency, these become much more visible. Indeed, in panel (a) the correlation between the
two sets of forecasts is 0.96 vs. 0.83 in panel (c). The threshold GARCH forecasts seem to
jiggle around the symmetric GARCH one, and therefore appear “spikier” in both directions,
in the sense there are a few months in the 1980s characterized by predicted volatility well
below 2% per month that could not be forecast from the smoother GARCH(1,0,1). Such dif-
ferences are presumably due to the fact that while in panel (a) both the standard ARCH
coefficients are small and fail to be significant while the two asymmetric ARCH coefficients
almost exactly cancel out, this does not occur in panel (c).

Consider a t-Student GARCH(1,1) model with fixed known parameters, controlled by a per-
sistence index A=a+f3:

otzﬂlt =2 —I—%gf + %ojt_l &,,, 1ID t(O,afﬂlt;v), v>2

Here, we have parameterized the GARCH process in such a way that 1/9 of the total persis-
tence comes from the lagged squared shock, ARCH-type ¢’ term, and 8/9 come from lagged

conditional variance. When A=0.9, this corresponds to «=0.1 and 3=0.8 that are fairly typ-
ical values in the literature. The other parameter that we shall be experimenting with is, of
course, v. We now compute unconditional and conditional excess kurtosis

4 4
M-B and ExKurt,(R.,)= L,
(Var[RHl D v-4
for a few representative values of A and v, reporting results. These are summarized at the
bottom of the example, for your convenience. When A=0 (no GARCH) and v=4.01, we have
ExKurt(R.,,) = 300 and ExKurt,(R,,,) = 300 because excess kurtosis can only come

from the t-Student shocks. In general, when A=0, ExKurt(R,,;) = ExKurt,(R;.,) = 1%4
will always obtain independently of v>4. When A=0.99 (very persistent GARCH) and
v=4.01, we have ExKurt(R;,,) = 2,565 and ExKurt,(R,,,) = 300: in this case, the sources
of excess kurtosis, volatility clustering and fat-tailed shocks compound to give massively
thick tails. The approximate equality is used here because the unconditional kurtosis is
computed using simulation methods with 100,000 independent trials (because of the noto-
rious difficulty in estimating excess kurtosis with any precision). When A=0.8 (persistent
GARCH) and v=9 (which seems typical of many financial series), we have ExKurt(R,,,) =
1.80 and ExKurt,(R;,,) = 1.2, which means that a persistent GARCH contributes a 1/3 in-
crease in excess kurtosis on top of a fat-tailed t-Student. Finally, when A=0.99 (an extremely
persistent GARCH) and v=20 (where the tails of the t-Student stop being significantly dif-
ferent from a normal distribution), we have ExKurt(R,,,) = 390 and ExKurt,(R,,,) =
0.375; this configuration gives powerful evidence of the interaction effects between the
thick tails generated by GARCH and the tails of the marginal density that characterizes the
assumed t-Student shocks. In fact, A = 0.99 by itself but under a Gaussian distribution (say,
assuming v=9999) does not generate such a massive excess kurtosis: ExKurt(R,,,) =
23.2. Therefore, it is the interaction between t-Student shocks and GARCH persistence that
captures empirically relevant excess kurtosis.

Here the danger is that by incorrectly assuming Gaussian shocks in all circumstances, a re-
searcher may force her GARCH model to express too high a persistence just because implic-
itly the parameter v is forced to diverge to infinity while the data would often “prefer” some
v<20. For instance, data generated by a mildly persistent process with mildly fat tails (say,
A=0.6 and v=15) would imply ExKurt(R,,;;) = 0.62 and ExKurt,(R.,,) = 0.55. If we
forced the shocks to be drawn from a Gaussian distribution, instead we would have to resort

ExKurt(R,,,)=
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to a much higher persistence of A=0.94, to obtain ExKurt(R.;,,;) = 0.61
while ExKurt,(R.;,) = 0. In other words, persistence has to be inflated from 0.6 to 0.94
simply to match the fourth moment of the data, regardless of the false view of the nature of
the process that this implies.

A v ExKurt(R.,,) ExKurt,(R,,,)
0 4.01 300 300
0.99 4.01 2,565 300
0.8 9 1.80 1.20
0.99 20 390 0.375
0.99 00 23.2 0
0.6 15 0.62 0.55
0.94 00 0.61 0

On-Line Ex. 5D. Among the large number of predetermined variables that have been proposed in the em-
pirical literature, one (family) has recently acquired considerable importance in exercises
aimed at forecasting variance: option implied volatilities, and in particular the (square of
the) CBOE's (Chicago Board Options Exchange) VXO and VIX indices as well as other func-
tions and transformations of the same.

The VXO represents a weighted, average implied volatility (IV) computed on S&P 100 index
options and offers a longer time series vs. VIX, that instead concerns implied volatilities
computed on S&P 500 index options. As discussed in Poon and Granger (2005), IV tends to
be more accurate than GARCH and related models at predicting future variance, even
though this is surprising because IV is normally based on a larger and timelier information
set that is by construction forward looking. However, options are written on a limited num-
ber of assets and indices: for instance, emerging market equity and bond indices and small
stocks are important building blocks of optimal portfolios but there are no options written
on them. So, the time-series models covered in this book, although inferior to option-im-
plied models, will continue to play an important role going forward.

In general, models that use explanatory variables to capture time-variation in variance are
represented as:

UL‘2+1|L' =w+g(X,)+ ao_jt—lztz + :BO_tz—uc ’ (5D.1)

which is one more case of augmented GARCH and in which X, is a vector of predetermined

variables that may as well include implied volatility. Note that because this volatility model
is not written in log-exponential form, it is important to ensure that the model always gen-
erates a positive variance forecast, which will require that restrictions—either of an eco-
nomic type or at least in the form of mathematical constraints to be numerically imposed

during estimation—must be satisfied, to ensure that g(X,) >0 for all possible values of X,
, besides the usual w, a, 3= 0 (with one positive).
When X, consists of implied variance (say VXO for concreteness),
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R, =p+o,2,, with z_, ~IIDN(0,1)
2 2 2
Opqp =0+ + ﬂo-ﬂt—l + AVXO,
then there are interesting implications to explore. Assume that VX0 follows a stationary au-
toregressive first-order process, VX0, =, +0,VXO, , +¢, with ¢, white noise. The expres-

(5D.2)

sion for the unconditional variance remains easy to derive but it will be influenced by the
fact that over the long-run, on average, also VX0 can be taken to represent a predictor of

variance. If the process for VX0 is stationary, we know that 0<| ¢, |<1 and from
)
E[VXO0,]=9,+6,E[VXO0, ,1= E[VXO0,]= E[VXO0, ,]= ﬁ, (5D.3)
!
which is finite because |, |[< 1, we have:
E[o?, ]=0o+ aE[ef]+,BE[of+1lt] +AE[VXO,]

t+1]t

. w+2 (5D4)
= Elo; y]=—F.
1-0, 1-a-p

One may actually make more progress by imposing economic restrictions. For instance, tak-
ing into account that, if the options markets are efficient, then E[VXO0,]= E[O-t2+1|t] obtains,

=o+(a+p)Eo], 1+

one can establish a further connection between the parameters 8o and §; on one side, and
w, o, and:!

E[Gt2+1|t] = o+aE[gl]+ ﬂE[O-t2+1|t] +AE[VIX, ]

o (5D.5)
1-a-f-1
Because E[o},,,]=6,/(1-6,) butalso E[c},, 1=/ (1-a— - 1), we derive the restriction
that

=0+ ((X + ﬂ)E[O-t2+1|t] + lE[Gt2+1|t] = E[Ut2+1|t] =

_5)= ©w__ 5D.6
3 /(1-3)) a7 (5D.6)
should hold, which is an interesting and testable restriction.
We start by regressing log-gross monthly US value-weighted returns on the log of VXO di-
vided by 1200. The latter transformation is required by the fact that since 1986, CBOE has
been reporting VX0 as a percentage annualized volatility, while here we need a monthly
series comparable to the log of gross returns. The resulting series of log-monthly VXO data
contains however a unit root on the basis of an augmented Dickey-Fuller test and a simple
regression of log-returns on long-monthly VXO would represent an unbalanced regression
that, when estimated by OLS on a 1986-2016 sample, gives:

In(1+R,,,)=-0.123 —0.046ln[ VX0, )+em,
(0.000) (0.000) 1200

with an R-square of 6.93%. Using the formula of Example 5.19, the resulting RMSPE for
squared monthly returns is 38.01. For comparison, a GARCH(1,1) model, gives a RMSPE of
39.45.

In any event, we also proceed to estimate a balanced predictive regression:

In(1+R,,,)=0.008 — 0.149Aln( VX0, j +e.,.,
(0.000) (0.000) 1200

with a striking R-square of 41.1%: it is not really a high implied volatility that forecasts

1 For the asset pricing buffs, E[VX0,]= E[U:2+1|:] may present some problems, as VXO (and VIX) is
normally calculated under the risk-neutral measure while E[Gt2+1|t] refers to the physical measure.

Strictly speaking, the equality only holds assuming (at least, local) risk-neutrality.
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negative returns, it is an increasing implied volatility that does so. The resulting RMSPE is

interesting, only 34.0.

An interesting alternative is to use VXO not in alternative to GARCH but along with GARCH:
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Figure 5.D1 -Improvement in In-Sample Forecasting Accuracy from Using Implied Volatility Predic-
tions

Even though the GARCH model features a small and imprecisely estimated alpha coefficient,
the resulting RMSPE is low, 30.99 only, reducing by almost 25% the RMSPE of a plain-vanilla
GARCH model. This much is the value of using implied volatility in addition to time series
methods in variance forecasting. Figure 5.D1 shows why augmenting a standard GARCH(1,1)
model with past VXO values yields more accurate forecast of one-month ahead squared real-
ized returns. Moreover, the scatter plots show that while the plain vanilla and VXO-aug-
mented predictions are very similar for squared values between 0 and 40, for more extreme
values the GARCH model faces limitations in predicting spikes, and when the VXO is also em-
ployed, this occurs less. In fact, above 40, GARCH forecasts stop reacting to information, while
VXO can still yield predictions in excess of 70, which was very useful to forecast variance dur-
ing the Great Financial Crisis and then again in 2011.

The most famous NIC functional forms are derived by simply extending the GARCH NIC,
NIC(z, |67 = 6*)= A+ ac’z’ (where A=+ o’ >0) to a family of volatility models pa-
rameterized by 6,, ,,and 6, that can be written as follows:

NIC(z,)=[|z, - 6,|-6,(z,-6)F".  (5E.1)
The objective is then to estimate the parameters (8,, 6,, 6,, and ) of models with structure:

Gfﬂlt = NIC(z,)+ o, = w+[|z,— 0,|-6,(z, — 0,)** +ﬂo-t2IH (5E.2)

tle-1
One can retrieve a standard, plain vanilla GARCH(1,1) by setting 6, =0, 6,=0, and 6, =1.

Another important case that we have already encountered in Section 5.2.6, the NA-
GARCH(1,1) model, that can be obtained from (5E.1) by setting 6,=0 and 6, =1. Under
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these restrictions, the NIC becomes NIC(z,)=(|z, —6,|)* =(z, —6,)* (squaring an absolute

value makes the absolute value operator irrelevant, i.e., | f(x)|*=(f(x))*) and an asym-
metry derives from the fact that when 6, >0,

2 . >
(2,-0, = (z,-6,) <th ifz, >0 (5E.3)
(z,-0)Y >z i
in words, while positive standardized errors are reduced by 6, >0, negative news are mag-
nified in their impact on subsequent variance.

On-Line Ex. 5F. Extending Example 5.22, we also compute the per-week cumulative variance forecasts of
approximate 5-year Treasury note returns at the end of the sample for horizons H that vary
between 1 week and the end of 2027. We also estimate a IGARCH(1) model with t-Student
innovations and proceed to compute the same per-week cumulative variance forecasts. The
estimated RiskMetrics model is:

R, =-0.002 + 0.254R, + 0.3740;

(0572) (0.000) (0.193) de-1 e Cen
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Figure 5F.1 compares the variance forecasts of cumulative returns from the two models. As
expected, as the horizon grows, forecasts from a stationary GARCH(1,1) stabilize in corre-
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Figure 5F.1 -Comparing Per-Week Average Cumulative Variance Forecasts from t-Student Stationary
GARCH(1,1) and RiskMetrics(1)
of course if were to repeat this experiment in correspondence to a forecast origin at which
> &% we would find a monotone declining shape of the GARCH(1,1) prediction as a

t+1|t
function of H.

On-Line Ex. 5G. Consider the four Fama-French-Carhart factor portfolios often used in asset pricing and as-
set management. For each of the value-weighted excess market, SMB, HML, and momentum
(these were all previously defined) portfolio returns, we have the following sample mo-
ments and implied MM estimates of y, 6, and v in constant mean, homoskedastic process

R, =u+oz 11D t(0,1;v):

t+1’ t+1
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Ptf. Sample Mean Sample Vol. Sample Ex. Kurt. 1 o) \Y
Market 0.025 0.986 15.717 0.025 0.727 4.382
SMB 0.007 0.522 24.457 0.007 0.402 4.245
HML 0.019 0.499 10.856 0.019 0.374 4.553
Mom 0.030 0.702 14.799 0.030 0.519 4.405

Interestingly, all portfolios display massive excess kurtosis, hence they cannot be modeled
as having a marginal normal distribution and as a result all the estimated MM values for v
fall between 4.25 and 4.55.

How do we proceed to maximize the log-likelihood function of a sample by selecting the
optimizing parameters, subject to § e ®? Appropriate methods of numerical, constrained
optimization need to be implemented: this is what packages such as Matlab, Gauss, E-
Views, or Stata are for. For instance (i.e., other, better but more complex methods are feasi-
ble), Newton's method makes use of the Hessian, which is a KxK matrix

H(0)=0" (8)/0000' that collects second partial derivatives of the log-likelihood function

with respect to each of the parameters in © . Similarly the K x1 gradient 0 (0) /00 col-
lects the first partial derivatives of the log-likelihood function with respect to each of the

elements in O . Let 0 ; denote the value of the vector of estimates at step j of the algorithm,
and let 0 (,) /00 and H(0,) denote, respectively, the gradient and the Hessian evaluated

at é ;- Then the fundamental equation to update the estimates according to Newton's algo-
rithm is:
0.,=06,-H'(®)[0(®)/0]  (5H1)

Because the log-likelihood function is to be maximized, the Hessian should be negative def-
inite, at least when 9 ; is sufficiently near éT. This ensures that this step is in an uphill direc-
tion. The maximization process therefore proceeds through the following steps:

* Setan initial vector of parameters, §,, and compute H‘l(éo) and 0 (éo) / 00.

= Compute the new vector of estimated parameters 61 = éo —H‘l(éo)[é (éo) / 08]

and therefore H_l(é ) and & (é ) / 00; check that the Euclidean norm || é Sy
|| (in words, this is the square root of the sum of all squared differences between the
elements of 9 and 9 ) is not inferior to some small threshold parameter (typically,
10-%).

» Update the vector of parameter estimates to éz = él —H‘l(él)[a (él) /00] and
check that the norm || éz - 61 || is not inferior to the threshold parameter.

= Continue (unless a maximum number of iteration has been exceeded, but with fast
computers often thousands of iterations are affordable in the space of a few minutes

only) until . =8, ~H(6, )[4 (,,)/20] is such that ||, —8 , || falls below the
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fixed convergence threshold, that signals that the optimizing vector has stopped
changing.

n e .
Set @ 9]
Numerical optimization is a very sensitive business; a myriad of choices are considered to
be crucial to obtain “reliable” results, such as the initial value éo, the convergence tolerance

criterion, and often how much the algorithm is supposed to “travel” in the direction indi-
cated by the inverse Hessian matrix, i.e., the coefficient t in the iteration in (5.H1), general-

ized to read as éjﬂ = éj - TH_l(é].)[a (éj)/ﬁe], where t > 0 (clearly a t < 1 “dims” the step
taken in direction [© (éj) / 00], while at > 1 acts as a multiplier). Reliability here is often

evidence or even taken to offer some guarantee that é;“ :é], truly represents a global (as

opposed to local) maximizer of the log-likelihood function and as such it is unique, as as-
sumed. For instance, just to get hard evidence on this aspect, it is often advised to start off
the maximization algorithm in correspondence of a range of alternative starting values and
then retain, for the true and often lengthy iterative Newton-style search, the most promising
one(s).

Other numerical optimization methods are of course possible. A few of them are faster than
Newton’s method because they replace the Hessian matrix with cheaper to compute nega-
tive definite K x K matrices, for instance OPG(0)=-[0 (0)/00][0 (8)/00]', which is negative
definite by construction, unless 0 (8)/00=0, which would instead show that a stationary

point has been reached. The advantage of this expression is that it only requires calculation
(often numerically) of first-order derivatives. Moreover, our simplified illustration of New-
ton’s method ignores the role played by constraints, that may interfere with setting

éj = éj—l - Hfl(éj_ J[o (éj_l) / 08], when the constraints are violated.

As an example of calculations of confidence intervals based on the last set of ML estimates
in Example 5.24, we have:

Coefficient 99%Cl 95%CI 90%CI Coefficient 90%CI 95%CI 99%ClI

0 0.022 0.026 0.028 0.039 0.049 0.051 0.055
xl 0.099 0.105 0.108 0.122 0.137 0.140 0.145
(o) 0.004 0.005 0.005 0.007 0.008 0.008 0.009
(o3 0.012 0.014 0.016 0.024 0.032 0.033 0.036
) 0.092 0.096 0.099 0.111 0.124 0.126 0.131
B 0.903 0.906 0.907 0.914 0.922 0.923 0.926
v 6.712 6.978 7.114 7.823 8.532 8.668 8.933

Table 51.1 -90%, 95%, and 99% Asymptotic Confidence Intervals from t-Student MA(1), Thresh-
old GARCH(1,1,1) for US Excess Stock Returns

Clearly, none of the intervals contains zero as a lower bound, and this derives from the fact
that all coefficients had been found to be significant with p-values lower than 1% early on
(note that here the widest interval reported is computed at confidence of 1-p=99%)). It is
also useful to look at the joint, pairwise confidence ellipses of the estimated ML parame-
ters considered in pairs, as we do in Figure 5I.1 for the GARCH related parameters «, 0, ﬂ ,
and V (the remaining parameters have been dropped just to keep the figure readable).
To familiarize with a (1-p)% confidence ellipse, consider the top, rightmost panel of Figure
51.1, where we have the 95% ellipse involving the persistence (a+0.50 + /) index of the t-

Student threshold GARCH(1,1,1) model and the “number of degrees-of-freedom”
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parameter, V. The region inside the circular ellipse includes the infinite combinations of
the persistence index and of Vv that can be assigned a confidence of 0.95, i.e., in a frequentist
sense, that shall characterize the parameter estimates in 95% of all samples of a size iden-
tical to the sample that has been used to obtain parameter estimates in this example. For
instance, a combination of a persistence index of 0.998 and of a value for v that equals 9,
should occur rather infrequently. The dot at the center of the ellipse—in this case at approx-
imately a persistence index of 0.994 and a value of Vv equal to 7.9—corresponds to the point
estimates reported in Table 51.1. The four dotted lines represent for each pair, the same
95% confidence intervals in Table 5I.1, for instance Vv falls with probability 95% between
6.9 and 8.7; interestingly, the persistence index is 95% of the time between 0.989 and 0.998,
i.e, it is estimated to be high and in excess of 0.99 with considerable precision. Finally, per-
fectly round ellipses indicate that there is approximate zero correlation between ML esti-
mates in pair; ellipses that are “slanted” to the left (right), like the case of the persistence

index and VvV, indicate the existence of negative (positive) correlation.
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Figure 51.1 - 95% Confidence Ellipses for Pairs of ML Parameter Estimates from t-Student MA(1),
Threshold GARCH(1,1,1) for US Excess Stock Returns

The Figure ends up showing the existence of a rather strong and negative correlation be-
tween ML estimates of a and 6 (which is expected, given their similar meaning and inter-
pretation), and also a and (. As already remarked, fatter-tailed distributions for the errors
tend to lead to higher and not lower estimates of the GARCH persistence, that is contrary to
what sometimes thought.

Consider again the simple Gaussian MA(1)-threshold GARCH(1,1) estimated in Example 51
above on daily US excess stock returns:

2
Xt+1 = 90%(%)6+ (2010(%? gt + O-t+1|tZt+1 Zt+1 11D N(Or 1)
2 2 2 2
Ol =0.009+ 0022 +Q.1121, e 409110,

The Jarque-Bera test on the standardized residuals from this model is JB(z)=4095.1 which
commands a p-value of zero. The model as such is rejected and the assumption

11



Applied Time Series Analysis for Finance

z,., ~1ID N(0,1) can at most be retained in a QMLE framework, i.e., only as an approxima-

tion. The following histogram and nonparametric (kernel) density estimator let us appreci-
ate what the key source of non-normality is in the case of these data: even though the excess
kurtosis ends up exceeding 2.5, the sample skewness of -0.40 appears to be too large for
normality to fare well.

5
[ ] Histogram - Series: Standardized Residuals
—==- Kernel [ Sample 1963 - 2016
44 [—N [ 1N Observations 13594
ormal f\-
Mean -0.006117
3 i % Median 0.021961
2 4 Maximum 4.792783
2 ' Minimum -10.49168
a b Std. Dev. 0.999731
2] A Skewness -0.401410
i \ Kurtosis 5.566180
L)
14 Jarque-Bera 4095.078
Probability 0.000000
0 T 1 T T T 1 T T

6 5 4 3 2 -1 0 1 2 3 4 5
Figure 5L.1 - Histogram and Key Summary Statistics for Standardized Residuals Obtained from a
Gaussian threshold GARCH(1,1,1)

In case you are wondering, we have estimated and analyzed the normality of standardized
residuals from the entire range of models featured in the examples that appear in Chapter
5 with references to this particular series, finding results that are not qualitatively different
from Figure 5L.1: it is hard for textbook GARCH models to capture the thick tails of the data,
especially the left tail that therefore commands a large and statistically significant negative
skewness.
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