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On-Line Ex. 9A.

We use the same monthly US excess returns data as in Example 9.1
in the main text (the sample is 1986:01 - 2016:12) to compare the
fit and the estimates of two simple MSIH(2,0)-type models. The first
is the same first-order Markov switching model already analyzed (p-
values are in parenthesis):
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This model features persistent states and implies a maximized log-
likelihood of -1051.8 and information criteria of 5.687, 5.712, and
5.751 for AIC, Hannan-Quinn, and BIC, respectively. Next, we re-es-

timate the model imposing the restriction that Pr( =Jjl|S, = 1)

=2 (bear)

Pr( a=J|S, ]) p; or, equivalently, that we a simple IID switch-

ing model may be adequate. We find:
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The estimated transition matrix is radically different and the second
bear regime has lost any persistence. This model achieves a maxim-
ized log-likelihood of -1065.7, considerably inferior to a MC with
memory, and information criteria of 5.757, 5.777, and 5.809 for AIC,
Hannan-Quinn, and BIC, respectively: these all exceed the criteria

reported for the persistent MS model which is then to be preferred.
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The two plots compare the (filtered) probabilities of a bear market
state deriving from two models to reveal that imposing such “hard”
restrictions on the transition matrix as those implied by an IID mix-
ture may severely change the economic meaning of the estimates
obtained. Because a simple switching framework characterizes the
bear regime as rather episodical and non-persistent (see the right
plot), while a Markov switching framework reveals that the US stock
market would visit this state often (almost 50% of the sample), the
opposite derives from the simple switching case. This difference
may have important effects in applied work and practical applica-
tions of the model.

In-Line Supp. 9B. (Misspecification Tests Applied to MS Models) Once a restricted
set of (or more simply, one) MS models has been estimated, either
the need of further improvements could arise as the result of a few
diagnostic checks or the best model will be chosen based on the suc-
cess of such checks. Although the EM algorithm naturally delivers

estimates of the parameters Y and $1j0 besides the smoothed se-
quence of state probabilities {ft|T}tT=1 and would therefore lead to

define the (smoothed) residuals as éqT =Y; —Xt;l?:;ﬂr, t=1,2,..,T

these are not well suited to the use in diagnostic checks as they are
full-sample statistics and hence they structurally overestimate the
explanatory power of a MS model. On the contrary, the one-step
ahead prediction errors,

ét|t—1 =Y —XeAP'S, g1 =Y — X AS i, (9B.1)

are limited information statistics (being based on filtered probabili-

ties) and uncorrelated with the information set 3;.; because

Ely:13:1] =Xt121P'$t_1|t_1 and therefore the prediction errors in
(9.B1) form a martingale difference sequence, i.e.:

E[éﬂt—l | Se—1]1=ELy; |St—1]_XtAP'ft—1|t—1 =0. (9.B2)

In the case of heteroskedastic MS models, such prediction errors
shall need to be appropriately standardized:

K K
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Zyg-1 = E (€% P 10 1)1 = E Etje—1 (Ve —X AP’ 1), (9.B3)
k=1 k=1
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Therefore standard tests of the hypothesis in (9.B2) or
E[imfl |3;_1]1=0 (such as Portmanteau tests of no serial correla-
tion) could be used in order to detect any deviation from the mar-
tingale structure.! Here, E[ﬁqt_l | 3;_1]1=0 means that none of the in-

formation contained in 3;_1 can help to forecast subsequent pre-
diction errors, so that (9.B2) implies the possibility of testing re-
strictions such as ElZye 12" pe—p-113¢41=0,
E[Zy_19(Z'_p_p-1)|F¢-11=0 or E[2y_1q(3,_1)]=0 Vh>1 where
g(*) is any smooth function from R" to RY and q(-) is any function
that extracts information from 3;_1. Importantly, even though the
MS model may have assumed conditional normality of the errors,
there is no presumption that the one-step ahead forecast errors be
normally distributed, as they are themselves mixtures of normal

densities.
Finally, common sense suggests that correct specification of a MS

model should give smoothed probability distributions {éqT }thl that

consistently signal switching among states with only limited periods
in which the associated distribution is flatly spread out over the en-
tire support and uncertainty dominates. Regime Classification
Measures (RCMs) have been popularized as a way to assess
whether the number of regimes K is adequate. In simple two-regime
frameworks, the early work by Hamilton (1988) offered a rather in-
tuitive regime classification measure,

K sk

i.e., the sample average of the products of the smoothed state prob-
abilities. Clearly, when a MS model offers precise indications on the
nature of the regime at each time ¢, the implication is that for at least
one value of k=1,...K, &k, = 1 so that ¥X_, &, = 0 because most
other smoothed probabilities will be zero. Therefore a good MS
model will imply RCM; = 0.2 However, when applied to models with

1 With the caveat that that the one-step ahead prediction errors do not pos-
sess a Gaussian density and hence the approximate validity of Portman-
teau standard tests can only be guessed.

2 On the opposite, the worst possible MS model will have
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K >2, RCMj has one obvious disadvantage: a model can imply an

enormous degree of uncertainty on the current regime, but still im-
ply ¥X_, fg‘w =~ 0 for most values of t. For instance, when K = 3, it is
easy to see that if §t1|T =1/2, §t2|T =1/2,and gﬁT =0Vt then RCM, =
0 even though this remains a rather uninformative switching model
to use in practice. As a result, it is rather common to witness that as
K exceeds 2, almost all switching models (good and bad) will auto-
matically imply values of RCM; that are very close to 0. Guidolin

(2009) proposes a number of alternative measures that may shield
against this type of problems, for instance

k2K ( j
RCM, =100{ 1- -—
2 K 1)2 T ;H §t|T

We re-examine Example 9.4 in the textbook to ask whether the MS
model previously selected passes a few misspecification tests. We
analyze the residuals and standardized residuals from the best fit-
ting, after penalizing for the size of the parameter vector to be esti-
mated, MSIH(3) regression model that has emerged from our earlier
work. The various panels of Table 9.B1 analyze the sample ACFs and
the associated Ljung-Box statistics (up to order 12) for the level of
the residuals, the square and absolute value of the standardized re-
siduals, and the cross-sample ACF between the standardized resid-
uals and the two regressors.

(9.B5)

Autocorrelation Partial Correlation AC PAC Q-Stat P-value
il i 1 0.103 0.103 17.051 0.000
i 0 2 -0.026 -0.037 18.124  0.000
i i 3 0045 0.052 21384  0.000
| i 4 -0.007 -0.019 21467  0.000
| | 5 -0.005 0.01 21510  0.001
i i 6 -0.010 -0.013 21.684  0.001
i i 7 -0.016 -0.012 22.092  0.002
i il 8 -0.012 -0.010 22.344  0.004
i [ 9 -0.035 -0.033 24.347  0.004
i i 10 -0.022 -0.015 25162  0.005
i i 11 -0.014 -0.012 25462  0.008
i il 12 -0.020 -0.016 26.098  0.010

Table 9.B1, panel (a) - SACF of MSIH(3) One-Week Prediction Errors
Panel (a) shows that there is some statistically significant

E&T =.. :fng =1/K so that Zlefng =1/K? and RCM;=100. Therefore
RCM; €[0,100] and lower values are to be preferred to higher ones.
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autocorrelation left in the model residuals, even though this is lim-
ited to a first-order pattern.

Autocorrelation Partial Correlation AC PAC Q-Stat P-value
| | 1 -0.008 -0.008 0.0948 0.758
| | 2 0009 0.009 02152 0.898
i i 3 0043 0.044 3.2687 0352
| | 4 -0.002 -0.001 3.2757 0.513
| | 5 -0.002 -0.003 3.2827 0.656
i i 6 0041 0.039 59888 0.424
i i 7 0.045 0.046 9.2264 0237
i i 8 0.033 0.033 10990 0.202
i Il 9 0035 0032 12976 0.164
| Il 10 0.030 0.027 14464 0.153
i i 11 -0.021 -0.023 15.167 0.175
i i 12 0.046 0.041 18558 0.100

Table 9.B1, panel (b) - SACF of MSIH(3) Squared Standardized One-

Week Prediction Errors

Autocorrelation Partial Correlation AC PAC Q-Stat P-value
i i 1 -0.013 -0.013 0.2535 0.615
i i 2 -0.013 -0.013 05112 0.774
! ] 3 0022 0022 13307 0.722
i ih 4 0025 0025 23506 0.672
| | 5 0.003 0.004 23626 0.797
i il 6 0.045 0.045 5.6214 0.467
1] ih 7 0.041 0.041 8.2892 0.308
Il Il 8 0.025 0.026 92656 0.320
i i 9 0046 0046 12.721 0.176
i i 10 0.046 0.045 16210 0.094
i i 11 -0.010 -0.011 16.375 0.128
i i 12 0.046 0.042 19.773 0.071

Table 9.B1, panel (c) - SACF of MSIH(3) Absolute Standardized One-
Week Prediction Errors

In panels (b) and (c), we have instead evidence that any heteroske-
dasticity patterns are well captured by the three state model. This is

consistent with E[Z;_19(Zt_pp_p-1)1S¢-1]1=0.

RESID_MS3,VXO(-i) RESID_MS3,VXO(+i) i lag lead
' ' 0 0.0649 0.0649
i ] 1 -0.0069 0.0260
i i 2 -0.0052 0.0164
i i 3 -0.0082 0.0148
i i 4 0.0013 0.0013
il i) 5 -0.0050 0.0066
i i 6 0.0049 -0.0093
i i 7 -0.0038 -0.0058
s i 8 0.0120 -0.0176
il i 9 -0.0236 -0.0098
il i 10 -0.0275 0.0129
i i 11 -0.0471 0.0033
il I 12 -0.0541 -0.0033
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RESID MS3,TERM(-i) RESID MS3,TERM(+i) i lag lead
o o 0 -0.0773 -0.0773
i m 1 -0.0007 -0.0926
il [l 2 0.0029 -0.0836
i o 3 0.0029 -0.0896
i o 4 0.0216 -0.0805
o o 5 0.0253 -0.0768
i o 6 0.0314 -0.0684
i 5[ 7 0.0292 -0.0574
il i 8 0.0168 -0.0516
i i 9  0.0099 -0.0452
il i 10 0.0049 -0.0406
i i 11 0.0061 -0.0337
i i 12 0.0028 -0.0279

Table 9.B1, panels (d)-(e) - Sample Cross-ACF of MSIH(3) One-Week
Prediction Errors

In panels (d)-(e) we have evidence that both regressors at time t are
correlated with one-week prediction errors between time ¢-1 and ¢,
which is normal. However, lagged regressors fail to forecast predic-

tion errors which is consistent with E[§t|t_1q(3t_1)]=0. On the

contrary, we are not worried about the fact that lagged prediction
errors appear to precisely predict the subsequent values of the re-
gressors (in particular the term spread), even though this may rep-
resent evidence in favor of adopting a fully multivariate strategy
based on the estimation of MSVARH models, in which also excess
bond returns predict subsequent VX0 and term spread values and
this is taken into account.

Finally, using a tool that has been introduced in Chapter 5, we have
also applied to the one-step ahead prediction errors the Brock,
Dechert, Scheinkman and LeBaron’s (1996)portmanteau test of in-

dependence, as E[Zy;1q9(3;1)]=0 and E[Zy19(Z'_p—n-1)|S¢-1]

=0 also imply independence. We select the BDS parameter & se-
lected to be one standard deviation of the residuals and a maximum
m=6. Because we apply the tests to the standardized prediction er-
rors, we compute p-values using a bootstrap with 20,000 repeti-
tions. We find that for all values of m between 2 and 6, the null hy-
pothesis of IIDness is never formally rejected, with the smallest p-
value of 0.056 for m=6.

Of course, the BDS finding may depend on the fact that some first-
order serial correlation had been left in the residuals. Therefore we
proceed to re-estimate the MSIH(3) regression with a time-invari-
ant AR(1) term added:
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-0.376 ifS, ., =1

(0.000)
10v - 107
X ={-0.712 ifS,., =2+0.212x;,"" +0.113spread, +0.008VX0, +
e+ (0.002) e+l (0.000) © (0.000) P " oassy ¢
-0.651 ifS, ;=3
(0.062) e+l

0.782 ifSp.q =1 0.977 0.016 0.007

+ %0%010% ifS,,; =2x&'%  P=]0.022 0974 0.004

2,069 ifS,,, =3 0.000 0.069 0.931

(0.000)
The AR(1) term is now highly significant, but it seems to take away
some of the accuracy in estimation of the VXO coefficient and takes
us to the usual problem: under the efficient market hypothesis and
many asset pricing models, past excess returns and term spread
slopes should not forecast subsequent ones (but empirically they
do), while past variance should forecast excess returns, and empiri-
cally they seem to! Let's now whether the resulting one-week ahead
prediction errors appear now to be serially uncorrelated and inde-
pendent.

Autocorrelation Partial Correlation AC PAC Q-Stat P-value

0.002 0.002 0.0078 0.930
-0.031 -0.031 1.5683 0.457
0.074 0.074 10.445 0.015
-0.020 -0.022 11.100 0.025
. . 11.102 0.049
-0.010 -0.017 11.256 0.081
0.001 0.005 11.259 0.128
-0.011 -0.013 11473 0.176
-0.030 -0.028 12971 0.164
10 -0.017 -0.018 13.436 0.200
11 -0.019 -0.019 14.031 0.231
12 -0.042 -0.039 16.856 0.155

O ONOUTA WN -
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Table 9.B2 - SACF of MSIH(3)-AR(1) One-Week Ahead Prediction Er-
rors

In Table 9.B2, we see that the improvement is visible, even though a
third-order lag which may possibly be attributed to sampling varia-
tion (i.e., bad luck). The same BDS test applied before, based on a
bootstrap with 20,000 repetitions, yields no rejections of the null
hypothesis of [IDness, with the smallest p-value of 0.093 for m=3.

Finally, we perform RCM calculations for the three-state model just
estimated and compare it with the other models estimated before.
Table 9.B3 reports the results. Visibly, RCM; drops to almost zero for
all models with 3 regimes, irrespective of their actual regime
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classification quality that is instead revealed by RCMz. Moreover, it
appears that the last MS regression estimated, which also included
an autoregressive term, does offer the best possible regime classifi-
cation quality and this may be taken as a positive indication of
strong model classification, even though an RCM; of 39.6 is less than
impressive in absolute terms.

Model K Switching Regressors Non-Switching Regressors RCM1 RCM2
MSI(2)-Regress 2 Const, Term spread, VXO _ 4345 56.82
MSIH(2)-Regress 2 Const, Term spread, VX0 _ 37.68  49.57
MSIH(2)-Regress 2 Const Term spread, VXO 37.58 49.42
MSIH(3)-Regress 3 Const, Term spread, VX0 _ 119  66.79
MSIH(3)-Regress 3 Const Term spread, VXO 1.68 57.09
MSIH(3)-Regress 3 Const, Excess(-1), Term spread, VX0 _ 384  87.09
MSIH(3)-Regress 3 Const, Excess(-1) Term spread, VXO 223 5842
MSIH(3)-Regress 3 Const Excess(-1), Term spread, VXO  0.72  39.58

Table 9.B3 - Regime Classification Measures for a Variety of
MSI(AR)H(K) Regression Models

i-Line Supp.9C. (The Risk-Return Trade-Off) Despite its key role in many applica-

tions, estimating and understanding the dynamics over time of the
market risk premium has proven difficult. The market risk premium
can be defined as the mean of market returns in excess of some risk-

freerate, say E[R;,4 —R/].Forinstance, even though classical finance

theory suggests estimating the risk premium based on the theoreti-
cal relationship between mean returns and the contemporaneous
variance of returns, for a long time empirical research has failed to
document a significantly positive relationship between average re-
turns and the filtered /predicted levels of market volatility (see, e.g.,
Glosten, Jagannathan, and Runkle, 1993). In fact, a number of re-
searchers have instead unveiled a negative relationship between
volatility and market prices, the so-called volatility feedback ef-
fect. As already discussed in Chapter 5 (where it was called leverage
effect), this feedback refers to the intuitive idea that an exogenous
change in the level of market volatility initially generates additional
return volatility as stock prices adjust in response to new infor-
mation about future discounted expected returns.

Because the aggregate stock market portfolio remains one of the
most natural starting points to an understanding of asset pricing
phenomena, it is surprising that there is still a good deal of contro-
versy around the issue of how to measure risk at the market level.
Recent empirical studies have documented two puzzling results.
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First, there is evidence of a weak, or even negative, relation between
conditional mean returns and the conditional volatility of returns.
Second, they document significant time variation in this relation. For
instance, in a modified GARCH-in mean framework using post-
World War II monthly data, Glosten, Jagannathan, and Runkle
(1993) find that the estimated coefficient on volatility in a re-
turn/volatility regression is negative: a higher conditional volatility
would depress the conditional risk premium, not the opposite. Or,
equivalently, negative news that depress the risk premium, would
increase conditional variance.

More recently, Lettau and Ludvigson (2001) have provided evi-
dence suggesting the failure to find a positive relationship between
excess returns and market volatility may result from not controlling
for shifts in investment opportunities, i.e., regimes. However, within
applications of MS models to financial economics, this idea dates
back at least to a seminal paper by Turner, Startz and Nelson (1989,
henceforth TSN). TSN introduce a model of the aggregate market
portfolio (the Standard and Poor's index) in which excess returns are
drawn from a mixture of two normal densities because market port-
folio returns are assumed to switch between two states. The regimes
are characterized by the variances of their densities as a high-vari-
ance state and a low-variance state. The state itself is assumed to be
generated by a first-order Markov process,

X =t +& & NID(0,0% ), (9.C1)

where 012 > o-g and the conditional mean x; =E[x,|J;_{] is specified

below. Of course this is an odd MSIH(2) model, in the sense that var-
iance shifts with regimes in the usual way but the intercept varies

according to some function that also involves the Markov chain S;.

TSN develop two models based on the heteroskedastic structure dis-
cussed above. Each incorporates a different assumption about the
agents' information sets. In the first model, economic agents know
(because they observe it) the realization of the Markov state pro-
cess, even though the econometrician does not observe it. There are
two risk premia in this specification. The first is the difference be-
tween the mean of the distribution in the low-variance state and the
riskless return. Agents require an increase in return over the risk-
less rate to hold an asset with a random return. The second premium
is the added return necessary to compensate for increased risk in
the high-variance state:
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Ho ifS, =0
E[xtlst]={ e
y2 lfSt—l

The parameter estimates from their model suggest that whereas the

(9.C2)

first risk premium is positive, the second is negative, /}0 >0and
4 <0. Monthly data on S&P 500 index returns for 1946-1987 re-

veal that the two regimes identified by o% >op and [y # fiy are

highly persistent, with average durations of 3 months for the high
variance regime and of 43 months for the low variance one. Esti-
mates of this simple MSIH model, in which agents are assumed to
know the state, do not support a risk premium that increases with
risk, which is puzzling: parameter estimates indicate that agents re-
quire an increase in average annual returns over T-bills of approxi-
mately 10% to hold the risky asset in low-variance periods. The es-
timates also suggest, however, that the premium declines as the

level of risk increases, that is, 24 < ,[10 . Further, not only is fl1 signif-

icantly less than z, it is also significantly negative. Therefore TSN

reject the hypothesis of a risk premium increasing in the variance.
As we have seen in Example 9.6, this occurs also with reference to
more recent data on the S&P 500.

As already hinted at, misspecification is a likely explanation for
TSN’s result. If agents are uncertain about the state, so that they are
basing their decisions on forecasts of the regime in the following pe-
riod, estimates assuming they know the state with certainty will be
inconsistent. Accordingly, in their second model TSN assume that
neither economic agents nor the econometrician observe the states.
In each period, agents form probabilities of each possible state in the
following period conditional on current and past excess returns, and
use these probabilities in making their portfolio choices. Each pe-
riod, investors update their prior beliefs about that period's state
with current information using Bayes' rule, as in Section 5. The pa-
rameter of interest is then the increase in expected return necessary
to compensate the agents for a given percentage increase in the
prior probability of the high-variance state. Agents' portfolio choice
may be specified as a simple function of this probability:

M =a+APr(S, =1|3,_1) (9.C3)
where the constant, @, represents the agents' required excess re-
turn for holding an asset in the low-variance state. Note that this is
an intuitive and yet ad-hoc model: there is no reason for 4 to

10
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depend linearly on the filtered probability of a high-variance state,
Pr(S, =1]|3,_1). Yet, this simple model means that agents require an
increase in the excess return in period t when faced with an increase
in their prior probability that the high-variance state will prevail in
that period, and this intuition is sufficiently sound for the model to
represent a starting point. In fact, TSN generalize slightly this model
to

My =(1=S)ag +Spay + APr(S, =13, _4). (9.C4)
TSN are able to sign all the parameters in this simple empirical
model. The stock price at time ¢ should reflect all available infor-
mation. This requires that the price at t should fall below its value at
t—1 if some new unfavorable information about fundamentals,
such as an increase in variance, arrives between t—1 and t. This fall
is necessary to ensure that the return from time t to ¢ +1 is expected
to be higher than usual so as to compensate stockholders for the
added risk. According to this scenario, the return between ¢t -1 and
t will be negative on average for those periods in which adverse in-
formation is newly acquired, and positive on average when favora-
ble information is acquired. This means that the coefficient 1 at-
tached to Pr(S; =1|3,_1) represents the effect when agents antici-
pate as of time ¢ —1 that the return of time ¢ will be drawn from the
high-variance distribution. According to standard mean-variance
theory, foreknowledge of a high-variance should be compensated by
a higher expected return. The predicted variance in this model is
simply

E[of |34 1=[1-Pr(S, =1|3;_y)log +Pr(S, =1] 3, 1ot +
H1=Pr(S, =1| T )IPr(S, =1| Ty ) (e —ap)*.
Thus when Pr(S; =1[3;_1)€(0,1/2) is high, because
AR
OPr(S, =1|3;4)

is positive when Pr(S; =1|3,_1)<0.5, the expected excess return

(9.C5)

=(0f —04)+[1-2Pr(S, =1|3,_1)1(ey —)* (9C6)

should be positive so that the parameter A is positive. On the other
hand, it could be that today's high-variance state, S; =1, was not

anticipated in the previous period. In this case Pr(S;=1|3;_1) is
small so that the average return between t—1 and t is dominated
by ;. During a period in which agents are surprised by the event

11
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S¢ =1, the stock price must fall below what would have been seen

had S; =0 occurred instead. This will make the return between

t —1and tlower and will show up as a negative value for @7 . Similar
reasoning suggests that if the variance unexpectedly decreases, the
return between t—1 and t will turn out to be higher than usual, sug-
gesting that &y should be positive.

TSN also manage to establish the sign of a linear combination of the
parameters. The risk premium in ¢ is given by the expected value of
the excess return conditional on the current information set. Thus,
the risk premium is

My =[1=Pr(S; =1|3;_1)]eg + (g + A)Pr(S, =13;,4).  (9.C7)
If agents are risk-averse, this equation should always be positive
and increase with Pr(S, =1|3;_;). The expectation will always be

positive as long as @y =0 and a; +42>0. Finally, if both of these

conditions hold with inequality and @; +4 > &g then
OE[r 1541
oPr(S, =1|3,_1)
i.e.,, the risk premium will increase with agents' prior probability of
the high-variance state.

When estimated on S&P 500 monthly data, this model yields param-
eter estimates that are largely consistent with asset pricing theory.

The estimates (& =0.70%, & =—3.36% and A =2.88) provide

support for a risk premium rising as the anticipated level of risk
rises. If the agents are certain that next period's return will be drawn
from the low-variance density, agents anticipate a monthly return of
5% percent. Likewise, if agents are certain next period's return will
be drawn from the high-variance density, then agents will require a
monthly return of 180% annually. These estimates suggest that
agents perceive stocks to be a very risky asset during high-variance
periods. The unconditional probability of the high-variance state is
however only 0.0352. This means that in spite of that 180% spike in
expectation during high-variance regimes, the risk premium will av-
erage approximately 9% on an annual basis. This number is close to
the average excess return observed in the data, 7.5%. However, one

=y +A-ap>0, (9.c8)

problem remains: because @; +1—&; =-1.18<0, the risk premium
does not increase with anticipated variance; the variance of the

12
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linear combination is large in relation to the point estimate, the t-
statistic is -0.21, so that the model provides no evidence for a risk
premium changing proportionally or inversely with variance. This
result is consistent with evidence as early as French, Schwert, and
Stambaugh's (1987) who also find little evidence of a relation be-
tween the risk premium and volatility.

(Non-Normalities under MS Mixture: Implied Conditional Mo-
ments) Some insights may be gained from considering a simple uni-
variate MSIH(2) model written as

Yee1 =Seeath +(1=Seq g +[Sp01 +(1=S¢11)0012441 2401 ~N(0,1) (9.D1)
in which S;,1 =0,1 is unobservable at all points in time. You can eas-
ily see that in this special case, Si, 144 +(1—S¢,1)1y reproduces the

regime-dependence in kg

...; the same applies to
Ser101 +(1=5¢41)0y.

Let's start by checking moments for the benchmark, single-regime
case in which K =1. Because these will be important below, we
compute both unconditional and conditional moments. When K =1
,itis as if S; =0 always, which means there is only one regime and
4 and o may lose the pedix that refers to the regime. Therefore,
when we perform calculations for time t conditional moments and
for unconditional moments, respectively, we have:

Eclyenl=Elutoziq]=p+0oE 2 q]=u

Elyinl=Elu+oz, q]=u+0Elz, 4= 1
2 2
Var, [y, 1=Var[p+02z,4]1=0"Var [z, q]=0
Var[yHl]:Var[,u+azt+1]=JZVar[ZHl]=o-2

13
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E[(Ve _Et[.yt+1])3] _ Ef(u+oz4 _ﬂ)3]

Skewness [ y;.1]=

(Varly: D" o
3¢ 71,3
o E|z
=t [3 el (as z,,, ~N(0,1))
o
E[(u+ 0z —10°] 0 Elz} 4]
Skewness[y;.1]1= ’;+1 - 3tf+1 -0
o) o
E -E 4 E )t
Exkurt,[y,,1]= el (Ve t[.Vt-El]) ]_3: t[(/l+azi+1 1) ]_3 (9.D2)
(Vary[yeal) o
J4Et[zf+1]
=—4—3=0(aszt+1~N(O,l))
o
E Y 4pr 4
Exkurt[yHl]: t[(/u_"UZiJrl /,l) ]_3=O' [it+1]_3=0
O O

Because z;,1 ~N(0,1), y;,1 =u+0z;,4, and o is constant, we have

that Y¢4+1 has a normal conditional and unconditional distribution.
Things are a tad more involved when K =2. In this case, when you
apply the conditioning, you will also need to condition with respect
to the current state, S;:
Elyesq IS 1= ElSeam +(1=Se i) g +(Spyq01 +(1-Sp41)00)241 1S ]
=E[Spq |Selim +ENQA=Sp)| Selpto + E[Se i1 | S JEL01 241 | Se ]+
+E[(1=Sp1)|Se JE[09Z 141 | Se ]
=Pr(Se 1 =115 ) +(1-Pr(Se =115 )1
Elyea]=E[Seramm +(1=Seq )ty +(Spr101 +(1=Sp41)00)2¢11 ]
=E[Sg 1oy +E[(1=Sg1q)1uo + E[Sp 11 JE[012 41 1+ ET(1 = S41)1E[ 002,41 ]
=& +(1- &)k
(9.D3)
where 5_1 is the unconditional probability of regime 1, and (1—51)
is the unconditional probability of regime 2.3 Insofar as

3 The reason for E[S;,10;211S:1=E[S¢1115:1E[0}24115:1=0 j=0,1 is
that given S;, S, is independent of any other random variable indexed

at time t+1, and in particular S;,q is independent of Z;,q (just think of

the way we have simulated returns from MS in Section 2 of Chapter 9 in
the textbook). Moreover, E[o12.,1|S;]1=01E[2;41|S:]=01E[2,,1]=0 be-
cause  E[z,,4]=0 by construction. The same applies to

14
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& #Pr(Sp4115,) and (1-&)#1-Pr(S,,15,),
clearly E[R;,;|S;]#E[R;;1] as the first moment will be a time-vary-
ing one. As for variances:
Var,[ye11=Pr(Sesq =11 E(th +012¢0 ~Pr(Spsn =115 ~(1=Pr(Spyq =118, )119)* 15,1+
+Pr(Spsq =01, )E[(ttg + GpZesq —Pr(Sesn =118 )y ~(1=Pr(Seiy =11 ))sg)*1S¢]
=Pr(Sps1 =11 S)EI((1-Pr(Spq =118)) (11— tg) + 012¢41)° 1S, 1+
+Pr(Sy1 =01 SEI(Pr(S,41 =115,) (s — 1)+ 09 Z41) 1 S¢]
=Pr(Se31=118,)07 +(1=Pr(Sp31=11 800G +Pr(Sp.1 =11 S )(1=Pr(Spq =11 S:)) (111 — 1)’
(9.D4)
because [(1-Pr(Sy1 =115:))+(Pr(S.1 =115:))]=1. Instead
Var[yeq1= & El( + 0170 — & —(1- &)1 )1+
+(1-E)E[(Hy + o741 — &1 —(1-&)pig)*]
=& EN(1-&) (11 — 9) + 01241 1= (1= &ELE (1 — 110) + 0911 )']
=& (1-&) (- ) +(1-E)DE (w — 1) + §07 +(1-)og

_ _ _ _ (9.D5)
=& ot +(1-&)og + & (1-&)(y — 1)
In both cases, notice that
Var,[y;.11#Pr(Seq =11, )o7 +(1—Pr(S,4; =11S,))op
(9.D6)

Var, [y 11+ CElo'l2 +(1_é?1)0'g'
with the difference represented by  the terms

Pr(S,,; =1/5,)(1-Pr(S,.; =115,)) (14 — 14)* in the case of the condi-

tional variance and 51(1—51)(;11 —;10)2 in the case of the uncondi-
tional variance. This means that in a MSIH(2) model, not only the
regime-specific variances will be weighted in the overall variance
across regimes, but also the (squared) size of the between-regime
jumps in regime-specific means, ¢4 — 4, will contribute to the vari-

ability of the process.
We now move to compute conditional and unconditional skewness:

E[St+1o-jzt+1] =E[S;1 ]E[O'thJrl] =0,=0,1.
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E[(Ver1 —EelVen 1= Pr(Sp,1=11Sp)E[(1y + 01240 —Pr(Sp11=1] S )y +
—(1=Pr(Se1=11:)140)* |1+ Pr(S,yq =01 S)E(y + G741 +
—Pr(S;41 =118 ) —(1=Pr(S;,; =115))1)°15,]

=Pr(Sp =11S)(1-Pr(Sp,1 =118))° (11 — g )® + (1= Pr(Spyq =11 5,)) x
X(Pr(Ses1 =115:0)> (to — 1)’ + 07 EL 241 | S 1+ 05 El 2341 | S, 1+
+3Pr(Se =118 )(L=Pr(Sesq =118:0) (11 — 4o)o1 Bl 1 | S 1+
=3Pr(Spq =118 )~ Pr(Spq =11S0) (14 — 146)00 El27 11 1S, ]

=Pr(Sp,q =118.)A=Pr(S;,1 =11S)) (11 — 1)’ [(1—Pr(Se1 =115,))* +

~(Pr(S;41 =118.))?1+3Pr(Sp,1 =118, ) (1 -Pr(S,1 =115)) (14 — 1) (07 —55)
(9.D7)

where E[z},11S:1=0, E[z},1 | S;]=1, E[(1-Pr(S,,; =1| S,))*
2

(14 — o)’ 012441 1S 1= EN(Pr(Spuq =110 (g — 14 )* 00Ze4115:1=0

so that

Skewnessy[ye.1]= (14 — o)

& e (= et =1V 1161 01 =& ]80T -0 (9 pay
3/2

X
(61,0107 +(L=81,61)6 + 1,601 (1= 1,600) (t — 1)’
where we have shortened the notation by defining
&1.e41 =Pr(Sey1 =11S;) . Similarly, straightforward but tedious alge-
bra reveals that
Skewness[Ry 11= (4 ~ o) %

L S0-8)10 — 1)’ [(1-&)* - &'1+3(01 ~05)] (9.p9)

[Go7 +(1-&)og +&(1- &) (i — 1) T
This finding is very interesting:
Skewness,[y;,1]#0 if and only if 144 # 14

Skewness[ y,,1]1#0 if and only if 14 # 14, (9.D10)

i.e., you need switching in conditional means in order for non-zero
skewness to obtain. However, it is also clear that even when pipoit
is possible for both conditional and unconditional skewness coeffi-
cient to be zero when (this is just a sufficient condition):

(i) &,¢41=0 or 51 =0; (i) & ¢41=1o0r ggl =1. The two sets of re-

strictions do not carry the same meaning though, as 5_1 =0 or1

16
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really means we are not facing a MS model, in the sense that the un-
derlying MC may be clearly reduced to a single state, while &; ;,1 =0

or 1 just means that as of time ¢ you are certain that in the following
period you are either in the first regime or in the second.*
Finally, we deal with conditional and unconditional excess kurtosis:

Ee[(Reyq —E¢[Reiq ])4] =Pr(Sp 1= S)E[(ty + 012441 —Pr(Sp =115 )y +
—(1=Pr(Sp,1=115.))tig)* 15,1+ Pr(S,41=01 S EL(ttg + 21 —Pr(Spy1 =118 ) +
—(1-Pr(Se,1=115,))1)" 15, ]

=Pr(Sp,1=11 S ) (1= Pr(S,,1=11 ) (1t — 19) [(1—Pr(S,41=11 ) +(Pr(S,,1 =11 5,0)*]+
+6Pr(S;41=11 ) (1—Pr(S;41=11S.)) (1t — g )P L(1—Pr(Sp,1=11 S, ) +
+Pr(Sp11=115,.)05 1+3Pr(S,.1=11 S, o +3(1-Pr(Se.1=115,))oy

(9.D11)
where E[z,,11S,1=E[2,115,]1=0, Elz.11S;]=1, E[z},,1S,1=3, so that

Eren (1= &) |0t~ 1) 1O =y e+ & i 1+ 600 — 1)

ExKurt,[R,,1]=
(& 0101 +(1=&; 121)06 +E&1 (1= 1) (i — 1) T

2 2 4 4
[(1-&1 ¢41)01 + 8164100 ]} +381,¢4101 +3(1- &1, 141)00

(&1 00107 +(1=&1 141000 + &1 a1 (1=& 1) (g — 116)* T

(9.D12)
Similarly, straightforward but tedious algebra reveals that

4 If that seems more plausible, consider that Pr(S,,; =1|S;)=(1-pgg)x
Pr(S, =0|3,)+p11Pr(S, =1|3,) which can be 1 if and only if either
(1=pgo)Pr(S; =0|3;)=1 (but that means that Poo =0),
p11Pr(S; =1|3,)=1 (but that means that p;; =1), or the sum happens to

be one. The first two cases do indicate problems with the irreducibility of
the MC. The third case is more interesting. If

1=(1-pgo)Pr(S; =0]3)+p11 Pr(S, =1| 3, ) =€, P' Sy =€E[$144]
where €', =[0 1], this means that as of time t we are forecasting with cer-

tainty that time t+1 will be dominated by regime 1. That is rather odd as it
implies a very precise periodicity of the underlying MC.
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& 0-&)|(m 1) 10-5) + &1+
ExKurt[R, 1]=— 3 = = )
[S101 +(1=&1)og +61(1=61) (4 — 14)7]

460411 — 1o P[(1-5)of + E0g 13501 +3(1-&)oy ;
+ = = p— — -2.
(G107 +(1-&)og +& (- — 10)° T
This finding is once more very interesting. First of all, notice that
also in this case, when =14,

3 0-4' +3(1— 04
Ex Kurt,[R,,1]= $1,6¢101 +3(1~¢1,641)0%0 3

2 22
[&1,e4101 +(1-&1 e41)00 ]
4 4
&e4101 +(1=& ¢11)0g
2 2 2 4 2 2
&l 4101 T(1-8 1) 00 +281 141185 41 )00 01

which is less than the expression found above: MS dynamics means
simply adds to the excess kurtosis of a series. Moreover, in this case
MS will generate positive excess kurtosis if and only if

4 4.2 4 2 4
&1e4101 t(1=& r11)00 > &1 101 (=81 1) 00 +

(9.D13)

(9.D14)

=3 -1

5 5 (9.D15)
+2&) 111(1=& ¢11)og0]
Moreover, notice that if one also has o2 =% =2, then
4
0 [381, 11 +3(1- &1, 141)]
ExKurt,[R.,1]= 2 —=-3=0 (9.D16)

L R (e &

as it should be because when 4 =4 and o¢ =%, there is no MS
left in the process.
Because in the single-regime case, the normality of the shocks z;,1

carries over to the series investigated, it is sensible to ask what are
the conditional and unconditional distributions of returns under the
two-state MS process. Here the point is that even a simple two-state
MSIH model such as the one in this section, may generate substantial
departures from normality. Given a MS model, it is clear that condi-

tioning on S;.1 —which is equivalent to say that either the regime
is observable (but this violates our assumptions) or that, again
oddly, S;11 may be perfectly predicted— y, 4 ~N(us,, 05, ),
which is a simple Gaussian distribution. However, in a MS model,
S¢11 is unobservable, while the case in which S;,1 may be perfectly
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predicted given time t information appears to be bizarre. In fact,
even if you were to somehow know what the current, time ¢t regime

S; is, notice that in general Pr(S;,; =j|S; =I) represents the ge-
neric [1,j] element of the transition matrix P. If the Markov chain is
ergodic and irreducible, we know that Pr(S.=j|5,=i)<1,

I,j=1,2 . Because of this fact the conditional distribution of Y;,1 is:
fea 130 = F ear 1) =Pr(Sesq =115 )¢, 07 )+
+(1-Pr(S.q =115))¢(119,05),

AN . . .
where (ﬂ(,ul,Gl) is a normal density function with mean £4 and

(9.D17)

variance o2 .As we know from Definition 9.2, the density in (9.D17)
is a mixture, with probabilistic and time-varying weights
Pr(S;.4 =115;), (1-Pr(S;,;1 =1|S;), of two normal densities and it is

not itself a normal density. Therefore, even conditioning on time t
information and on knowledge (still difficult to obtain) of the cur-

rent state S;, returns in a two-state MS will not have a normal dis-
tribution, unless #y =44 and o3 =oZ, when (trivially)
fWei 13 =Pr(Seq =115)p(1,0°) + (1= Pr(Sp,1 =1| S, )P u,0%) (9.018)
=[Pr(Sps1 =115)+(1-Pr(S;,1 =115 )10(1.0°) = Hu,0%).
In fact, we note that when # =4 and of =o%, from results ob-
tained above we have

&1 (6 o) | (= 01061 011+ & g 1+3(0% ~ )
[$1,6410° +(1=&1,011)0" + &1 111 (L& i1 ) (e — 12)7]

(9.D19)
G0 (-6 )| 1061 020+ 80 ]+ 60 (161 11100761 0107

ExKurt,[R,.1]=

[610010° +(1=& 11)0” + &1 (=& i) (= 1)

351,t+104 +3(1-&, e )04
+ -3=0,

[E 1107 +(1=& 11)0° + & g (1= ) (= )T

(9.D20)
which is consistent with the conclusion that ;.1 follows a normal
distribution.

As for the unconditional density of V.1, i.e., the density that does
not condition on any precise prior information, it is logical to state
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that absent any information on either S; or at least Pr(S;[3;), the
best assessment we can make of each of the regimes is simply that
Pr(S, =1)=¢; and Pr(S, =0)=1-¢. Therefore, on average, in the
population, the data will come & percent of the time from ¢(z,,07)
and (1-¢&) percent of the time from ¢(4,,0¢). The result is that the
unconditional distribution of y;,; is:

z 2 z 2
fWe) =Gy, 01)+(1-& ) 14,00), (9.021)
which is another mixture (in this case, not time-varying, being un-
conditional) of two normal distributions and that, as we know, this

will imply (assuming & €(0,1))
z 1 E 201 _EN2 . E2 2 2
Skew[vy.11= (14 — o) g1 (1‘512) [(£4 __ﬂo) 2[(1_— 1) j g+ 3(012—3720 )] 20
[S101 +(1-&)og + &1 (-8 (1 — 14)°]
-8~ 1) 10-& )+ 01+ 60 —
- _ — +
(G0t +(1-&)og +& (-8 — 1) P (9-D22)
x[(1-74 )012 + 71105 ]}37110'{l +3(1-my )66L
+— — — —
[&107 +(1-&)ob + & (1- &) — )T
Additionally, when £ # 14 , notice that even the variance of f(y;,1)

ExKurt[y,.,]=

fails to simply be the probability-weighted average of o7 and o§

because, as we know, Var[y,,;1=& o7 +(1-&)og +&(1—E) (1 — 1)
The on-line Example 9E puts this ideas to work in an application to
Value-at-Risk calculations, showing how dealing with moments and
densities derived from MS models requires a degree of familiarity
with Monte Carlo simulation techniques.

For instance, Ryden, Terdsvirta, and Asbrink (1998) show that MS
mixtures estimated on daily S&P 500 returns for a long1928-1991
sample closely reproduces a range of properties of asset returns
previously emphasized in the literature (see Chapter 5 and Granger
and Ding, 1995): returns are not autocorrelated in levels (except,
possibly, at lag one); the autocorrelation functions of absolute and
squared returns decay slowly starting from the first autocorrelation

and Corr(|R; || R._ |)>Corr(|R; |9,|Rt_ |0)>0 for @#1; the decay

in the autocorrelation functions of squares and absolute values of
returns is much slower than the exponential rate of a stationary
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AR(1) or ARMA(p,q) model; the autocorrelations of sign(R;) are in-

significant; moreover, | R; | and sign(R,) are independent.

On-Line Ex. 9E. (Value-at-Risk in MS Models) As a case of the effectiveness and
benefits of MS modelling in risk management applications, consider
again the simple univariate MSIH(2) model,

Rii1=Seiamm +(1=Sei )ty +[Se4101 + (1= 54410012441 241 ~N(01),
in which $;,1 =0, 1 is unobservable at all points in time. In the limit

case in which K = 1, which is a benchmark single-state linear model,
to compute (say) 1% VaR is straightforward:

o

: , (9.E1)
—Pr(z 1<_VaR?+011(k:1)+/lJ_cD[_VaR?+011(k:1)+ﬂJ
= t+ =

Reo1— var’S! (k=1
0.01=Pr(Rt+1<—VaR&°11(k=1))=Pr[ 1 =#  VaRy (k=1)+u
o

o o

so that, after defining o1 () as the inverse CDF of a standard nor-
mal distribution, we have:

o 1(0.01)=07" [CD(_ VaR) (k=1)+ ﬂﬁ _ VarR®% (k=1)+ u
7 o (9.E2)

= VaR* (K =1)=-o®1(0.01) - 1
Now, moving to the K = 2 case, let's start from an approximate way
to look at the problem of computing 1% VaR: one colleague in your

risk management department is proposing to use the following con-
ditional 1% VaR measure:

VaR2S! (K =2) =—| Pr(S.1 =115,)0f +(1=Pr(S,.q =11S))f [0 (0.01)+

_[Pr(sul =118 ) +(1-Pr(Spq =1| St))ﬂo]'
in which the colleague is obviously conditioning with respect to the
current state, S; but still applying a normal distribution result. Un-
fortunately, you should not agree with his/her proposal, or at least

should clarify to the team that this is simply an approximation. The
reason is that in Section 8.3 of the book we have found that

FRe11130) = f(Reyn 1S =Pr(Sesa =11 S04, 07) + (1=Pr(S,,1=11 S, ) 145, 00)
# ([ Pr(S1=11 S0 )t +(1-Pr(S,1=11 S,k L Pr(S;.1 =115, )07 +(1-Pr(S,.1=115,))e ).

(9.E3)
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(9.E4)
and that f(R;;1|3;) does not follow a Normal distribution, but a prob-

ability-weighted mixture of two normal distributions which is itself not
a Normal distribution. As a result, the way of proceeding to VaR calcu-
lations proposed by the colleague may turn out to be grossly incorrect

as it employs ®1(0.01), where the use of the standard normal CDF was

previously coming from the fact that R ; ~N(,u,0'2). When this as-

sumption breaks down, the procedure is clearly invalid. Moreover, you
know from Section 3 of Chapter 8 that

Var,[R,1]=Pr(S;,1=1|8,)07 +(1-Pr(Se,1=115,))05 +Pr(Sey1 =115, ) (1-Pr(Se,1=11 S)) (141-49)
#Pr(S,,1 =11S,)07 +(1-Pr(S,.1 =11S:))o
(9.E5)
unless 4 =4 , which is generally not the case in a MSIH(2,0) model.

After you have made your objection during his presentation, this
colleague of yours revises his/her proposal to use the following con-
ditional 1% VaR measure:

VaRYSL (K =2) =—[Pr(S,,1=1S,)o? +(1-Pr(S,,, =11S,))08 +Pr(S,,1=1]S,)(1-Pr(S,,1=1]S,)) x
X~ 1) 107 (0.01) = [Pr(Sp.q =11 ) +(1-Pr(Spya =115t |
(9.E6)
Your reaction should remain negative: unfortunately, making one

claim less wrong does not make it correct. Even though it is now cor-
rect that

Var,[R,,11=Pr(S,,1=1|S,)ot +(1-Pr(S,,,=1|S,))of +
+Pr(Sp =11 S ) (A= Pr(Se1=15:)) (14 — 1o
the fact remains that
SR 13¢) = f(Req | S¢) =Pr(Spq =1 St)¢(ﬂ1'0'12) +(1-Pr(Seq =1| St))¢(y0,0'§)
# ([ Pr(Spaa =11 $: )ty +(1-Pr(S,1=11 )t

[Pr(S,.1=1|S,)0? +(1-Pr(S,,1=1]S,))oe 1+ Pr(S,.1=1] S, ) (1-Pr(S,,1=1] $,)) (141 — 149)*)
(9.E8)

? (9.E7)

so that VaR cannot be computed in that simply way.

Finally, it seems time for you to suggest how this should be done
correctly. Here you may be in trouble, though: unfortunately there
is no closed-form solution which means that you will have to resort
to simulation-based (Monte Carlo) methods. The problem is that

F(Re1 1S )=Pr(S, 1 =118 )14, 07) +(1~Pr(S, 1 =115.))¢(149,55) (9.E9)
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fails to have a closed-form representation and as such it impossible
to simply draw from some well-specified PDF or CDF. This means
that your proof of the functional form of 1% VaR in

0.01
Rii—u < VaR 1 (K=1)+u
o

0.01=Pr(R,,; <-VarR®% (K =1))= Pr[
(o2

0.01 0.01
—PI{Z " <_VaRt+1 (Kzl)"‘ﬂj_q)[_vaRtﬂ (K=1)+u
- t+ -
O o

J (9.E10)

simply fails because it is not true that Pr(z,, <(—V(1R&011 (k=1)+u)/0o)
can be measured using ®(-). What you can do is the following. First,
simulate a large number M of one-month returns assuming S, =0
from

Rii1=Spiat +(1=Sp0) g +[Spi101 + (1= Sp11)00)2441 2p1 ~N(0,1), (9.E11)
when S;.;1 =1 with probability py; =(1-pyo) and S;,; =0 with

probability pgo. Call these M one-month ahead returns

M
{Rﬁl(st :0)} > Second, simulate a large number M of one-month
m=1

returns assuming S; =1 from
Rev1=Seiam +(1=Spq )ty +[Sep101 +(1=S¢41)0012641 2411 ~N(0,1),
(9.E12)
When S;,; =1 with probability p;; and S;,; =0 with probability
M
1-py;. Call these M one-month ahead returns {Rgﬁl(st :1)} g Fi-
m=
nally, you need to aggregate this 2M simulations in a unique set, us-
ing:
R™, =Pr(S, =1|3,)R™, (S, =1)+(1—Pr(S, =1|3,))R™,(S, =0) m=1,2,..,M.
(9.E13)

5This means that when S;,1 =1 you will simulate from R, 1 =4 +01Z;,1;
when S;,1 =0 you will simulate from R;,; = 14y +0¢Z;,1. How do you sim-
ulate a two-point (also called Bernoulli) random variable that takes value
1 with probability 1—pgy and 0 with probability pgg ? Simple, you draw a
uniform defined on [0,1] and you set S;,; =1 if the uniform draw is less

than (or equal to) 1-pgg, and you set S;.; =0 otherwise.
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At this point, your 1% VaR will be simply defined as: the simulated

M
returns in the set {R{'}rl} . that leaves exactly 1% of your total M
m=

simulations (after your aggregation step, i.e., M/100 simulations,
which better be an integer) below the 1% VaR value.
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