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On-­‐‑Line	
  Ex.	
  9A.	
   We	
  use	
  the	
  same	
  monthly	
  US	
  excess	
  returns	
  data	
  as	
  in	
  Example	
  9.1	
  

in	
  the	
  main	
  text	
  (the	
  sample	
  is	
  1986:01	
  –	
  2016:12)	
  to	
  compare	
  the	
  
fit	
  and	
  the	
  estimates	
  of	
  two	
  simple	
  MSIH(2,0)-­‐‑type	
  models.	
  The	
  first	
  
is	
  the	
  same	
  first-­‐‑order	
  Markov	
  switching	
  model	
  already	
  analyzed	
  (p-­‐‑
values	
  are	
  in	
  parenthesis):	
  

	
  

This	
  model	
  features	
  persistent	
  states	
  and	
  implies	
  a	
  maximized	
  log-­‐‑
likelihood	
  of	
  -­‐‑1051.8	
  and	
  information	
  criteria	
  of	
  5.687,	
  5.712,	
  and	
  
5.751	
  for	
  AIC,	
  Hannan-­‐‑Quinn,	
  and	
  BIC,	
  respectively.	
  Next,	
  we	
  re-­‐‑es-­‐‑
timate	
  the	
  model	
  imposing	
  the	
  restriction	
  that	
  

	
  or,	
  equivalently,	
  that	
  we	
  a	
  simple	
  IID	
  switch-­‐‑
ing	
  model	
  may	
  be	
  adequate.	
  We	
  find:	
  

	
  

The	
  estimated	
  transition	
  matrix	
  is	
  radically	
  different	
  and	
  the	
  second	
  
bear	
  regime	
  has	
  lost	
  any	
  persistence.	
  This	
  model	
  achieves	
  a	
  maxim-­‐‑
ized	
   log-­‐‑likelihood	
  of	
   -­‐‑1065.7,	
   considerably	
   inferior	
   to	
   a	
  MC	
  with	
  
memory,	
  and	
  information	
  criteria	
  of	
  5.757,	
  5.777,	
  and	
  5.809	
  for	
  AIC,	
  
Hannan-­‐‑Quinn,	
   and	
  BIC,	
   respectively:	
   these	
   all	
   exceed	
   the	
   criteria	
  
reported	
  for	
  the	
  persistent	
  MS	
  model	
  which	
  is	
  then	
  to	
  be	
  preferred.	
  

	
  
Figure	
  9.A1	
  –Bear	
  State	
  Probabilities	
  from	
  Two	
  MS	
  Models	
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The	
  two	
  plots	
  compare	
  the	
  (filtered)	
  probabilities	
  of	
  a	
  bear	
  market	
  
state	
  deriving	
  from	
  two	
  models	
  to	
  reveal	
  that	
  imposing	
  such	
  “hard”	
  
restrictions	
  on	
  the	
  transition	
  matrix	
  as	
  those	
  implied	
  by	
  an	
  IID	
  mix-­‐‑
ture	
  may	
  severely	
  change	
   the	
  economic	
  meaning	
  of	
   the	
  estimates	
  
obtained.	
  Because	
  a	
  simple	
  switching	
  framework	
  characterizes	
  the	
  
bear	
  regime	
  as	
  rather	
  episodical	
  and	
  non-­‐‑persistent	
  (see	
  the	
  right	
  
plot),	
  while	
  a	
  Markov	
  switching	
  framework	
  reveals	
  that	
  the	
  US	
  stock	
  
market	
  would	
  visit	
  this	
  state	
  often	
  (almost	
  50%	
  of	
  the	
  sample),	
  the	
  
opposite	
   derives	
   from	
   the	
   simple	
   switching	
   case.	
   This	
   difference	
  
may	
  have	
  important	
  effects	
   in	
  applied	
  work	
  and	
  practical	
  applica-­‐‑
tions	
  of	
  the	
  model.	
  
	
  
	
  
	
  

On-­‐‑Line	
  Supp.	
  9B.	
  (Misspecification	
  Tests	
  Applied	
  to	
  MS	
  Models)	
  Once	
  a	
  restricted	
  
set	
  of	
  (or	
  more	
  simply,	
  one)	
  MS	
  models	
  has	
  been	
  estimated,	
  either	
  
the	
  need	
  of	
  further	
  improvements	
  could	
  arise	
  as	
  the	
  result	
  of	
  a	
  few	
  
diagnostic	
  checks	
  or	
  the	
  best	
  model	
  will	
  be	
  chosen	
  based	
  on	
  the	
  suc-­‐‑
cess	
  of	
   such	
  checks.	
  Although	
   the	
  EM	
  algorithm	
  naturally	
  delivers	
  
estimates	
  of	
  the	
  parameters	
   	
  and	
   	
  besides	
  the	
  smoothed	
  se-­‐‑

quence	
  of	
  state	
  probabilities	
   	
  and	
  would	
  therefore	
   lead	
  to	
  

define	
  the	
  (smoothed)	
  residuals	
  as	
   	
  t	
  =	
  1,	
  2,	
  …,	
  T,	
  
these	
  are	
  not	
  well	
  suited	
  to	
  the	
  use	
  in	
  diagnostic	
  checks	
  as	
  they	
  are	
  
full-­‐‑sample	
  statistics	
  and	
  hence	
  they	
  structurally	
  overestimate	
  the	
  
explanatory	
  power	
  of	
   a	
  MS	
  model.	
  On	
   the	
   contrary,	
   the	
  one-­‐‑step	
  
ahead	
  prediction	
  errors,	
  
	
   ,	
   (9B.1)	
  
are	
  limited	
  information	
  statistics	
  (being	
  based	
  on	
  filtered	
  probabili-­‐‑
ties)	
   and	
   uncorrelated	
   with	
   the	
   information	
   set	
   	
   because

	
   and	
   therefore	
   the	
   prediction	
   errors	
   in	
  
(9.B1)	
  form	
  a	
  martingale	
  difference	
  sequence,	
  i.e.:	
  

	
   .	
   (9.B2)	
  
In	
   the	
   case	
   of	
   heteroskedastic	
  MS	
  models,	
   such	
  prediction	
   errors	
  
shall	
  need	
  to	
  be	
  appropriately	
  standardized:	
  

.	
  	
  (9.B3)	
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Therefore	
   standard	
   tests	
   of	
   the	
   hypothesis	
   in	
   (9.B2)	
   or	
  
	
   (such	
   as	
   Portmanteau	
   tests	
   of	
   no	
   serial	
   correla-­‐‑

tion)	
  could	
  be	
  used	
  in	
  order	
  to	
  detect	
  any	
  deviation	
  from	
  the	
  mar-­‐‑
tingale	
  structure.1	
  Here,	
   	
  means	
  that	
  none	
  of	
  the	
  in-­‐‑
formation	
  contained	
  in	
   	
  can	
  help	
  to	
  forecast	
  subsequent	
  pre-­‐‑
diction	
   errors,	
   so	
   that	
   (9.B2)	
   implies	
   the	
  possibility	
   of	
   testing	
   re-­‐‑
strictions	
   such	
   as	
   ,	
  

	
  or	
   	
   	
  where	
  
	
  is	
  any	
  smooth	
  function	
  from	
  ℝ"	
  to	
  ℝ"	
  and	
   	
  is	
  any	
  function	
  

that	
  extracts	
  information	
  from	
   .	
  Importantly,	
  even	
  though	
  the	
  
MS	
  model	
  may	
  have	
  assumed	
  conditional	
  normality	
  of	
   the	
  errors,	
  
there	
  is	
  no	
  presumption	
  that	
  the	
  one-­‐‑step	
  ahead	
  forecast	
  errors	
  be	
  
normally	
   distributed,	
   as	
   they	
   are	
   themselves	
   mixtures	
   of	
   normal	
  
densities.	
  
Finally,	
   common	
  sense	
  suggests	
   that	
   correct	
   specification	
  of	
  a	
  MS	
  
model	
  should	
  give	
  smoothed	
  probability	
  distributions	
   	
  that	
  
consistently	
  signal	
  switching	
  among	
  states	
  with	
  only	
  limited	
  periods	
  
in	
  which	
  the	
  associated	
  distribution	
  is	
  flatly	
  spread	
  out	
  over	
  the	
  en-­‐‑
tire	
   support	
   and	
   uncertainty	
   dominates.	
   Regime	
   Classification	
  
Measures	
   (RCMs)	
   have	
   been	
   popularized	
   as	
   a	
   way	
   to	
   assess	
  
whether	
  the	
  number	
  of	
  regimes	
  K	
  is	
  adequate.	
  In	
  simple	
  two-­‐‑regime	
  
frameworks,	
  the	
  early	
  work	
  by	
  Hamilton	
  (1988)	
  offered	
  a	
  rather	
  in-­‐‑
tuitive	
  regime	
  classification	
  measure,	
  

	
   	
   (9.B4)	
  

i.e.,	
  the	
  sample	
  average	
  of	
  the	
  products	
  of	
  the	
  smoothed	
  state	
  prob-­‐‑
abilities.	
  Clearly,	
  when	
  a	
  MS	
  model	
  offers	
  precise	
  indications	
  on	
  the	
  
nature	
  of	
  the	
  regime	
  at	
  each	
  time	
  t,	
  the	
  implication	
  is	
  that	
  for	
  at	
  least	
  
one	
  value	
  of	
   	
  𝜉$%|'( ≃ 1	
  so	
  that	
  ∑ 𝜉$%|'(,

(-. ≃ 0	
  because	
  most	
  
other	
   smoothed	
   probabilities	
   will	
   be	
   zero.	
   Therefore	
   a	
   good	
   MS	
  
model	
  will	
  imply	
  𝑅𝐶𝑀. = 0.2	
  However,	
  when	
  applied	
  to	
  models	
  with	
  

                                                                                                                          
1	
  With	
  the	
  caveat	
  that	
  that	
  the	
  one-­‐‑step	
  ahead	
  prediction	
  errors	
  do	
  not	
  pos-­‐‑
sess	
  a	
  Gaussian	
  density	
  and	
  hence	
  the	
  approximate	
  validity	
  of	
  Portman-­‐‑
teau	
  standard	
  tests	
  can	
  only	
  be	
  guessed.	
  
2	
  On	
  the	
  opposite,	
  the	
  worst	
  possible	
  MS	
  model	
  will	
  have	
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,	
   has	
  one	
  obvious	
  disadvantage:	
  a	
  model	
  can	
  imply	
  an	
  
enormous	
  degree	
  of	
  uncertainty	
  on	
  the	
  current	
  regime,	
  but	
  still	
  im-­‐‑
ply	
  ∑ 𝜉$%|'(,

(-. ≃ 0	
  for	
  most	
  values	
  of	
  t.	
  For	
  instance,	
  when	
  K	
  =	
  3,	
  it	
  is	
  

easy	
  to	
  see	
  that	
  if	
   , ,	
  and	
   	
  ∀𝑡,	
  then	
  𝑅𝐶𝑀. =
0	
  even	
  though	
  this	
  remains	
  a	
  rather	
  uninformative	
  switching	
  model	
  
to	
  use	
  in	
  practice.	
  As	
  a	
  result,	
  it	
  is	
  rather	
  common	
  to	
  witness	
  that	
  as	
  
K	
  exceeds	
  2,	
  almost	
  all	
  switching	
  models	
  (good	
  and	
  bad)	
  will	
  auto-­‐‑
matically	
   imply	
  values	
  of	
   	
   that	
  are	
  very	
  close	
   to	
  0.	
  Guidolin	
  
(2009)	
  proposes	
  a	
  number	
  of	
  alternative	
  measures	
  that	
  may	
  shield	
  
against	
  this	
  type	
  of	
  problems,	
  for	
  instance	
  

	
   	
   (9.B5)	
  

We	
  re-­‐‑examine	
  Example	
  9.4	
  in	
  the	
  textbook	
  to	
  ask	
  whether	
  the	
  MS	
  
model	
  previously	
  selected	
  passes	
  a	
  few	
  misspecification	
   tests.	
  We	
  
analyze	
  the	
  residuals	
  and	
  standardized	
  residuals	
  from	
  the	
  best	
  fit-­‐‑
ting,	
  after	
  penalizing	
  for	
  the	
  size	
  of	
  the	
  parameter	
  vector	
  to	
  be	
  esti-­‐‑
mated,	
  MSIH(3)	
  regression	
  model	
  that	
  has	
  emerged	
  from	
  our	
  earlier	
  
work.	
  The	
  various	
  panels	
  of	
  Table	
  9.B1	
  analyze	
  the	
  sample	
  ACFs	
  and	
  
the	
  associated	
  Ljung-­‐‑Box	
  statistics	
  (up	
  to	
  order	
  12)	
  for	
  the	
  level	
  of	
  
the	
  residuals,	
  the	
  square	
  and	
  absolute	
  value	
  of	
  the	
  standardized	
  re-­‐‑
siduals,	
  and	
  the	
  cross-­‐‑sample	
  ACF	
  between	
  the	
  standardized	
  resid-­‐‑
uals	
  and	
  the	
  two	
  regressors.	
  	
  

	
  
Table	
  9.B1,	
  panel	
  (a)	
  –	
  SACF	
  of	
  MSIH(3)	
  One-­‐‑Week	
  Prediction	
  Errors	
  

Panel	
   (a)	
   shows	
   that	
   there	
   is	
   some	
   statistically	
   significant	
  

                                                                                                                          
	
   so	
   that	
   	
   and	
   .	
   Therefore	
  

	
  and	
  lower	
  values	
  are	
  to	
  be	
  preferred	
  to	
  higher	
  ones.	
  

2K > 1RCM

1
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Autocorrelation Partial	
  Correlation AC	
   	
  PAC 	
  Q-­‐‑Stat P-­‐‑value

1 0.103 0.103 17.051 0.000
2 -­‐‑0.026 -­‐‑0.037 18.124 0.000
3 0.045 0.052 21.384 0.000
4 -­‐‑0.007 -­‐‑0.019 21.467 0.000
5 -­‐‑0.005 0.001 21.510 0.001
6 -­‐‑0.010 -­‐‑0.013 21.684 0.001
7 -­‐‑0.016 -­‐‑0.012 22.092 0.002
8 -­‐‑0.012 -­‐‑0.010 22.344 0.004
9 -­‐‑0.035 -­‐‑0.033 24.347 0.004
10 -­‐‑0.022 -­‐‑0.015 25.162 0.005
11 -­‐‑0.014 -­‐‑0.012 25.462 0.008
12 -­‐‑0.020 -­‐‑0.016 26.098 0.010
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autocorrelation	
  left	
  in	
  the	
  model	
  residuals,	
  even	
  though	
  this	
  is	
  lim-­‐‑
ited	
  to	
  a	
  first-­‐‑order	
  pattern.	
  

	
  
Table	
  9.B1,	
  panel	
  (b)	
  –	
  SACF	
  of	
  MSIH(3)	
  Squared	
  Standardized	
  One-­‐‑

Week	
  Prediction	
  Errors	
  

	
  
Table	
  9.B1,	
  panel	
  (c)	
  –	
  SACF	
  of	
  MSIH(3)	
  Absolute	
  Standardized	
  One-­‐‑

Week	
  Prediction	
  Errors	
  
In	
  panels	
  (b)	
  and	
  (c),	
  we	
  have	
  instead	
  evidence	
  that	
  any	
  heteroske-­‐‑
dasticity	
  patterns	
  are	
  well	
  captured	
  by	
  the	
  three	
  state	
  model.	
  This	
  is	
  
consistent	
  with	
   .	
  

	
  

Autocorrelation Partial	
  Correlation AC	
   	
  PAC 	
  Q-­‐‑Stat P-­‐‑value

1 -­‐‑0.008 -­‐‑0.008 0.0948 	
  0.758
2 0.009 0.009 0.2152 	
  0.898
3 0.043 0.044 3.2687 	
  0.352
4 -­‐‑0.002 -­‐‑0.001 3.2757 	
  0.513
5 -­‐‑0.002 -­‐‑0.003 3.2827 	
  0.656
6 0.041 0.039 5.9888 	
  0.424
7 0.045 0.046 9.2264 	
  0.237
8 0.033 0.033 10.990 	
  0.202
9 0.035 0.032 12.976 	
  0.164
10 0.030 0.027 14.464 	
  0.153
11 -­‐‑0.021 -­‐‑0.023 15.167 	
  0.175
12 0.046 0.041 18.558 	
  0.100

Autocorrelation Partial	
  Correlation AC	
   	
  PAC 	
  Q-­‐‑Stat P-­‐‑value

1 -­‐‑0.013 -­‐‑0.013 0.2535 	
  0.615
2 -­‐‑0.013 -­‐‑0.013 0.5112 	
  0.774
3 0.022 0.022 1.3307 	
  0.722
4 0.025 0.025 2.3506 	
  0.672
5 0.003 0.004 2.3626 	
  0.797
6 0.045 0.045 5.6214 	
  0.467
7 0.041 0.041 8.2892 	
  0.308
8 0.025 0.026 9.2656 	
  0.320
9 0.046 0.046 12.721 	
  0.176
10 0.046 0.045 16.210 	
  0.094
11 -­‐‑0.010 -­‐‑0.011 16.375 	
  0.128
12 0.046 0.042 19.773 	
  0.071

| 1 | 1 1ˆ ˆ[ ( ' )| ]t t t ht h tE g- - - - -Á =z z O

RESID_MS3,VXO(-­‐‑i) RESID_MS3,VXO(+i) i	
   	
  lag 	
  lead

	
  0 	
  0.0649 	
  0.0649
	
  1 -­‐‑0.0069 	
  0.0260
	
  2 -­‐‑0.0052 	
  0.0164
	
  3 -­‐‑0.0082 	
  0.0148
	
  4 	
  0.0013 	
  0.0013
	
  5 -­‐‑0.0050 	
  0.0066
	
  6 	
  0.0049 -­‐‑0.0093
	
  7 -­‐‑0.0038 -­‐‑0.0058
	
  8 	
  0.0120 -­‐‑0.0176
	
  9 -­‐‑0.0236 -­‐‑0.0098
	
  10 -­‐‑0.0275 	
  0.0129
	
  11 -­‐‑0.0471 	
  0.0033
	
  12 -­‐‑0.0541 -­‐‑0.0033
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Table	
  9.B1,	
  panels	
  (d)-­‐‑(e)	
  –	
  Sample	
  Cross-­‐‑ACF	
  of	
  MSIH(3)	
  One-­‐‑Week	
  

Prediction	
  Errors	
  
In	
  panels	
  (d)-­‐‑(e)	
  we	
  have	
  evidence	
  that	
  both	
  regressors	
  at	
  time	
  t	
  are	
  
correlated	
  with	
  one-­‐‑week	
  prediction	
  errors	
  between	
  time	
  t-­‐‑1	
  and	
  t,	
  
which	
  is	
  normal.	
  However,	
  lagged	
  regressors	
  fail	
  to	
  forecast	
  predic-­‐‑
tion	
   errors	
   which	
   is	
   consistent	
   with	
   .	
   On	
   the	
  
contrary,	
  we	
  are	
  not	
  worried	
  about	
  the	
  fact	
  that	
  lagged	
  prediction	
  
errors	
  appear	
  to	
  precisely	
  predict	
  the	
  subsequent	
  values	
  of	
  the	
  re-­‐‑
gressors	
  (in	
  particular	
  the	
  term	
  spread),	
  even	
  though	
  this	
  may	
  rep-­‐‑
resent	
   evidence	
   in	
   favor	
   of	
   adopting	
   a	
   fully	
  multivariate	
   strategy	
  
based	
  on	
   the	
  estimation	
  of	
  MSVARH	
  models,	
   in	
  which	
  also	
  excess	
  
bond	
  returns	
  predict	
  subsequent	
  VXO	
  and	
  term	
  spread	
  values	
  and	
  
this	
  is	
  taken	
  into	
  account.	
  
Finally,	
  using	
  a	
  tool	
  that	
  has	
  been	
  introduced	
  in	
  Chapter	
  5,	
  we	
  have	
  
also	
   applied	
   to	
   the	
   one-­‐‑step	
   ahead	
   prediction	
   errors	
   the	
   Brock,	
  
Dechert,	
  Scheinkman	
  and	
  LeBaron’s	
  (1996)portmanteau	
  test	
  of	
  in-­‐‑
dependence,	
   as	
   	
   and	
  

also	
   imply	
   independence.	
  We	
   select	
   the	
  BDS	
  parameter	
   δ	
   se-­‐‑
lected	
  to	
  be	
  one	
  standard	
  deviation	
  of	
  the	
  residuals	
  and	
  a	
  maximum	
  
m=6.	
  Because	
  we	
  apply	
  the	
  tests	
  to	
  the	
  standardized	
  prediction	
  er-­‐‑
rors,	
  we	
   compute	
  p-­‐‑values	
   using	
   a	
   bootstrap	
  with	
   20,000	
   repeti-­‐‑
tions.	
  We	
  find	
  that	
  for	
  all	
  values	
  of	
  m	
  between	
  2	
  and	
  6,	
  the	
  null	
  hy-­‐‑
pothesis	
  of	
  IIDness	
  is	
  never	
  formally	
  rejected,	
  with	
  the	
  smallest	
  p-­‐‑
value	
  of	
  0.056	
  for	
  m=6.	
  
Of	
  course,	
  the	
  BDS	
  finding	
  may	
  depend	
  on	
  the	
  fact	
  that	
  some	
  first-­‐‑
order	
  serial	
  correlation	
  had	
  been	
  left	
  in	
  the	
  residuals.	
  Therefore	
  we	
  
proceed	
  to	
  re-­‐‑estimate	
  the	
  MSIH(3)	
  regression	
  with	
  a	
  time-­‐‑invari-­‐‑
ant	
  AR(1)	
  term	
  added:	
  

RESID_MS3,TERM(-­‐‑i) RESID_MS3,TERM(+i) i	
   	
  lag 	
  lead

	
  0 -­‐‑0.0773 -­‐‑0.0773
	
  1 -­‐‑0.0007 -­‐‑0.0926
	
  2 	
  0.0029 -­‐‑0.0836
	
  3 	
  0.0029 -­‐‑0.0896
	
  4 	
  0.0216 -­‐‑0.0805
	
  5 	
  0.0253 -­‐‑0.0768
	
  6 	
  0.0314 -­‐‑0.0684
	
  7 	
  0.0292 -­‐‑0.0574
	
  8 	
  0.0168 -­‐‑0.0516
	
  9 	
  0.0099 -­‐‑0.0452
	
  10 	
  0.0049 -­‐‑0.0406
	
  11 	
  0.0061 -­‐‑0.0337
	
  12 	
  0.0028 -­‐‑0.0279

| 1 1ˆ[ ( )]t t tE q- -Á =z O

| 1 1ˆ[ ( )]t t tE q- -Á =z O | 1 | 1 1ˆ ˆ[ ( ' )| ]t t t ht h tE g- - - - -Áz z
=O
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The	
  AR(1)	
  term	
  is	
  now	
  highly	
  significant,	
  but	
  it	
  seems	
  to	
  take	
  away	
  
some	
  of	
  the	
  accuracy	
  in	
  estimation	
  of	
  the	
  VXO	
  coefficient	
  and	
  takes	
  
us	
  to	
  the	
  usual	
  problem:	
  under	
  the	
  efficient	
  market	
  hypothesis	
  and	
  
many	
   asset	
   pricing	
  models,	
   past	
   excess	
   returns	
   and	
   term	
   spread	
  
slopes	
   should	
  not	
   forecast	
   subsequent	
  ones	
   (but	
   empirically	
   they	
  
do),	
  while	
  past	
  variance	
  should	
  forecast	
  excess	
  returns,	
  and	
  empiri-­‐‑
cally	
  they	
  seem	
  to!	
  Let’s	
  now	
  whether	
  the	
  resulting	
  one-­‐‑week	
  ahead	
  
prediction	
  errors	
  appear	
  now	
  to	
  be	
  serially	
  uncorrelated	
  and	
  inde-­‐‑
pendent.	
  

	
  
Table	
  9.B2	
  –	
  SACF	
  of	
  MSIH(3)-­‐‑AR(1)	
  One-­‐‑Week	
  Ahead	
  Prediction	
  Er-­‐‑

rors	
  
In	
  Table	
  9.B2,	
  we	
  see	
  that	
  the	
  improvement	
  is	
  visible,	
  even	
  though	
  a	
  
third-­‐‑order	
  lag	
  which	
  may	
  possibly	
  be	
  attributed	
  to	
  sampling	
  varia-­‐‑
tion	
   (i.e.,	
  bad	
   luck).	
  The	
  same	
  BDS	
   test	
  applied	
  before,	
  based	
  on	
  a	
  
bootstrap	
  with	
   20,000	
  repetitions,	
   yields	
  no	
   rejections	
   of	
   the	
  null	
  
hypothesis	
  of	
  IIDness,	
  with	
  the	
  smallest	
  p-­‐‑value	
  of	
  0.093	
  for	
  m=3.	
  
Finally,	
  we	
  perform	
  RCM	
  calculations	
  for	
  the	
  three-­‐‑state	
  model	
  just	
  
estimated	
  and	
  compare	
  it	
  with	
  the	
  other	
  models	
  estimated	
  before.	
  
Table	
  9.B3	
  reports	
  the	
  results.	
  Visibly,	
  RCM1	
  drops	
  to	
  almost	
  zero	
  for	
  
all	
   models	
   with	
   3	
   regimes,	
   irrespective	
   of	
   their	
   actual	
   regime	
  

1(0.000)
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P

Autocorrelation Partial	
  Correlation AC	
   	
  PAC 	
  Q-­‐‑Stat P-­‐‑value

1 0.002 0.002 0.0078 	
  0.930
2 -­‐‑0.031 -­‐‑0.031 1.5683 	
  0.457
3 0.074 0.074 10.445 	
  0.015
4 -­‐‑0.020 -­‐‑0.022 11.100 	
  0.025
5 -­‐‑0.001 0.004 11.102 	
  0.049
6 -­‐‑0.010 -­‐‑0.017 11.256 	
  0.081
7 0.001 0.005 11.259 	
  0.128
8 -­‐‑0.011 -­‐‑0.013 11.473 	
  0.176
9 -­‐‑0.030 -­‐‑0.028 12.971 	
  0.164
10 -­‐‑0.017 -­‐‑0.018 13.436 	
  0.200
11 -­‐‑0.019 -­‐‑0.019 14.031 	
  0.231
12 -­‐‑0.042 -­‐‑0.039 16.856 	
  0.155
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classification	
  quality	
  that	
  is	
  instead	
  revealed	
  by	
  RCM2.	
  Moreover,	
  it	
  
appears	
  that	
  the	
  last	
  MS	
  regression	
  estimated,	
  which	
  also	
  included	
  
an	
  autoregressive	
  term,	
  does	
  offer	
  the	
  best	
  possible	
  regime	
  classifi-­‐‑
cation	
   quality	
   and	
   this	
   may	
   be	
   taken	
   as	
   a	
   positive	
   indication	
   of	
  
strong	
  model	
  classification,	
  even	
  though	
  an	
  RCM2	
  of	
  39.6	
  is	
  less	
  than	
  
impressive	
  in	
  absolute	
  terms.	
  

	
  
Table	
  9.B3	
  –	
  Regime	
  Classification	
  Measures	
  for	
  a	
  Variety	
  of	
  

MSI(AR)H(K)	
  Regression	
  Models	
  
	
  
	
  
	
  

On-­‐‑Line	
  Supp.9C.	
   (The	
  Risk-­‐‑Return	
  Trade-­‐‑Off)	
  Despite	
  its	
  key	
  role	
  in	
  many	
  applica-­‐‑
tions,	
  estimating	
  and	
  understanding	
  the	
  dynamics	
  over	
  time	
  of	
  the	
  
market	
  risk	
  premium	
  has	
  proven	
  difficult.	
  The	
  market	
  risk	
  premium	
  
can	
  be	
  defined	
  as	
  the	
  mean	
  of	
  market	
  returns	
  in	
  excess	
  of	
  some	
  risk-­‐‑
free	
  rate,	
  say .	
  For	
  instance,	
  even	
  though	
  classical	
  finance	
  
theory	
  suggests	
  estimating	
  the	
  risk	
  premium	
  based	
  on	
  the	
  theoreti-­‐‑
cal	
   relationship	
   between	
  mean	
   returns	
   and	
   the	
  contemporaneous	
  
variance	
  of	
  returns,	
  for	
  a	
  long	
  time	
  empirical	
  research	
  has	
  failed	
  to	
  
document	
  a	
  significantly	
  positive	
  relationship	
  between	
  average	
  re-­‐‑
turns	
  and	
  the	
  filtered/predicted	
  levels	
  of	
  market	
  volatility	
  (see,	
  e.g.,	
  
Glosten,	
   Jagannathan,	
   and	
  Runkle,	
  1993).	
   In	
   fact,	
   a	
   number	
   of	
   re-­‐‑
searchers	
   have	
   instead	
   unveiled	
   a	
   negative	
   relationship	
   between	
  
volatility	
   and	
  market	
   prices,	
   the	
   so-­‐‑called	
  volatility	
   feedback	
  ef-­‐‑
fect.	
  As	
  already	
  discussed	
  in	
  Chapter	
  5	
  (where	
  it	
  was	
  called	
  leverage	
  
effect),	
  this	
  feedback	
  refers	
  to	
  the	
  intuitive	
  idea	
  that	
  an	
  exogenous	
  
change	
  in	
  the	
  level	
  of	
  market	
  volatility	
  initially	
  generates	
  additional	
  
return	
   volatility	
   as	
   stock	
   prices	
   adjust	
   in	
   response	
   to	
   new	
   infor-­‐‑
mation	
  about	
  future	
  discounted	
  expected	
  returns.	
  
Because	
   the	
   aggregate	
   stock	
  market	
   portfolio	
   remains	
   one	
   of	
   the	
  
most	
   natural	
   starting	
  points	
   to	
   an	
   understanding	
   of	
   asset	
   pricing	
  
phenomena,	
  it	
  is	
  surprising	
  that	
  there	
  is	
  still	
  a	
  good	
  deal	
  of	
  contro-­‐‑
versy	
  around	
  the	
  issue	
  of	
  how	
  to	
  measure	
  risk	
  at	
  the	
  market	
  level.	
  
Recent	
   empirical	
   studies	
   have	
   documented	
   two	
   puzzling	
   results.	
  

Model K Switching	
  Regressors Non-­‐‑Switching	
  Regressors RCM1 RCM2
MSI(2)-­‐‑Regress 2 Const,	
  Term	
  spread,	
  VXO ___ 43.45 56.82
MSIH(2)-­‐‑Regress 2 Const,	
  Term	
  spread,	
  VXO ___ 37.68 49.57
MSIH(2)-­‐‑Regress 2 Const Term	
  spread,	
  VXO 37.58 49.42
MSIH(3)-­‐‑Regress 3 Const,	
  Term	
  spread,	
  VXO ___ 1.19 66.79
MSIH(3)-­‐‑Regress 3 Const Term	
  spread,	
  VXO 1.68 57.09
MSIH(3)-­‐‑Regress 3 Const,	
  Excess(-­‐‑1),	
  Term	
  spread,	
  VXO ___ 3.84 87.09
MSIH(3)-­‐‑Regress 3 Const,	
  Excess(-­‐‑1) Term	
  spread,	
  VXO 2.23 58.42
MSIH(3)-­‐‑Regress 3 Const Excess(-­‐‑1),	
  Term	
  spread,	
  VXO 0.72 39.58

1[ ]ftE R R+ -



9	
  Markov	
  Switching	
  Models	
  

9	
  

First,	
  there	
  is	
  evidence	
  of	
  a	
  weak,	
  or	
  even	
  negative,	
  relation	
  between	
  
conditional	
  mean	
  returns	
  and	
  the	
  conditional	
  volatility	
  of	
  returns.	
  
Second,	
  they	
  document	
  significant	
  time	
  variation	
  in	
  this	
  relation.	
  For	
  
instance,	
   in	
   a	
   modified	
   GARCH-­‐‑in	
   mean	
   framework	
   using	
   post-­‐‑
World	
   War	
   II	
   monthly	
   data,	
   Glosten,	
   Jagannathan,	
   and	
   Runkle	
  
(1993)	
   find	
   that	
   the	
   estimated	
   coefficient	
   on	
   volatility	
   in	
   a	
   re-­‐‑
turn/volatility	
  regression	
  is	
  negative:	
  a	
  higher	
  conditional	
  volatility	
  
would	
  depress	
  the	
  conditional	
  risk	
  premium,	
  not	
  the	
  opposite.	
  Or,	
  
equivalently,	
  negative	
  news	
  that	
  depress	
  the	
  risk	
  premium,	
  would	
  
increase	
  conditional	
  variance.	
  
More	
   recently,	
   Lettau	
   and	
   Ludvigson	
   (2001)	
   have	
   provided	
   evi-­‐‑
dence	
  suggesting	
  the	
  failure	
  to	
  find	
  a	
  positive	
  relationship	
  between	
  
excess	
  returns	
  and	
  market	
  volatility	
  may	
  result	
  from	
  not	
  controlling	
  
for	
  shifts	
  in	
  investment	
  opportunities,	
  i.e.,	
  regimes.	
  However,	
  within	
  
applications	
   of	
  MS	
  models	
   to	
   financial	
   economics,	
   this	
   idea	
   dates	
  
back	
  at	
  least	
  to	
  a	
  seminal	
  paper	
  by	
  Turner,	
  Startz	
  and	
  Nelson	
  (1989,	
  
henceforth	
  TSN).	
   TSN	
   introduce	
   a	
  model	
  of	
   the	
  aggregate	
  market	
  
portfolio	
  (the	
  Standard	
  and	
  Poor's	
  index)	
  in	
  which	
  excess	
  returns	
  are	
  
drawn	
  from	
  a	
  mixture	
  of	
  two	
  normal	
  densities	
  because	
  market	
  port-­‐‑
folio	
  returns	
  are	
  assumed	
  to	
  switch	
  between	
  two	
  states.	
  The	
  regimes	
  
are	
  characterized	
  by	
  the	
  variances	
  of	
  their	
  densities	
  as	
  a	
  high-­‐‑vari-­‐‑
ance	
  state	
  and	
  a	
  low-­‐‑variance	
  state.	
  The	
  state	
  itself	
  is	
  assumed	
  to	
  be	
  
generated	
  by	
  a	
  first-­‐‑order	
  Markov	
  process,	
  

	
   (9.C1)	
  

where	
   	
  and	
  the	
  conditional	
  mean	
   	
  is	
  specified	
  
below.	
  Of	
  course	
  this	
  is	
  an	
  odd	
  MSIH(2)	
  model,	
  in	
  the	
  sense	
  that	
  var-­‐‑
iance	
  shifts	
  with	
  regimes	
  in	
  the	
  usual	
  way	
  but	
  the	
  intercept	
  varies	
  
according	
  to	
  some	
  function	
  that	
  also	
  involves	
  the	
  Markov	
  chain	
   .	
  
TSN	
  develop	
  two	
  models	
  based	
  on	
  the	
  heteroskedastic	
  structure	
  dis-­‐‑
cussed	
  above.	
  Each	
  incorporates	
  a	
  different	
  assumption	
  about	
  the	
  
agents'	
  information	
  sets.	
  In	
  the	
  first	
  model,	
  economic	
  agents	
  know	
  
(because	
   they	
  observe	
   it)	
   the	
   realization	
  of	
   the	
  Markov	
  state	
  pro-­‐‑
cess,	
  even	
  though	
  the	
  econometrician	
  does	
  not	
  observe	
  it.	
  There	
  are	
  
two	
  risk	
  premia	
  in	
  this	
  specification.	
  The	
  first	
  is	
  the	
  difference	
  be-­‐‑
tween	
  the	
  mean	
  of	
  the	
  distribution	
  in	
  the	
  low-­‐‑variance	
  state	
  and	
  the	
  
riskless	
  return.	
  Agents	
  require	
  an	
  increase	
  in	
  return	
  over	
  the	
  risk-­‐‑
less	
  rate	
  to	
  hold	
  an	
  asset	
  with	
  a	
  random	
  return.	
  The	
  second	
  premium	
  
is	
  the	
  added	
  return	
  necessary	
  to	
  compensate	
  for	
   increased	
  risk	
   in	
  
the	
  high-­‐‑variance	
  state:	
  

2	
   (0, ),
tt t t t Sx NIDµ e e s= +

2 2
1 0s s³ 1[ | ]t t tE xµ -º Á

tS
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.	
   (9.C2)	
  

The	
  parameter	
  estimates	
  from	
  their	
  model	
  suggest	
  that	
  whereas	
  the	
  
first	
   risk	
   premium	
   is	
   positive,	
   the	
   second	
   is	
   negative,	
   and

.	
  Monthly	
  data	
  on	
  S&P	
  500	
  index	
  returns	
  for	
  1946-­‐‑1987	
  re-­‐‑

veal	
   that	
   the	
   two	
   regimes	
   identified	
   by	
   	
   and	
   	
   are	
  
highly	
  persistent,	
  with	
  average	
  durations	
  of	
  3	
  months	
  for	
  the	
  high	
  
variance	
   regime	
   and	
  of	
  43	
  months	
   for	
   the	
   low	
  variance	
   one.	
  Esti-­‐‑
mates	
  of	
  this	
  simple	
  MSIH	
  model,	
   in	
  which	
  agents	
  are	
  assumed	
  to	
  
know	
  the	
  state,	
  do	
  not	
  support	
  a	
  risk	
  premium	
  that	
  increases	
  with	
  
risk,	
  which	
  is	
  puzzling:	
  parameter	
  estimates	
  indicate	
  that	
  agents	
  re-­‐‑
quire	
  an	
  increase	
  in	
  average	
  annual	
  returns	
  over	
  T-­‐‑bills	
  of	
  approxi-­‐‑
mately	
  10%	
  to	
  hold	
  the	
  risky	
  asset	
  in	
  low-­‐‑variance	
  periods.	
  The	
  es-­‐‑
timates	
   also	
   suggest,	
   however,	
   that	
   the	
   premium	
   declines	
   as	
   the	
  
level	
  of	
  risk	
  increases,	
  that	
  is,	
   .	
  Further,	
  not	
  only	
  is	
   	
  signif-­‐‑
icantly	
  less	
  than	
   ,	
  it	
  is	
  also	
  significantly	
  negative.	
  Therefore	
  TSN	
  
reject	
  the	
  hypothesis	
  of	
  a	
  risk	
  premium	
  increasing	
  in	
  the	
  variance.	
  
As	
  we	
  have	
  seen	
  in	
  Example	
  9.6,	
  this	
  occurs	
  also	
  with	
  reference	
  to	
  
more	
  recent	
  data	
  on	
  the	
  S&P	
  500.	
  
As	
   already	
   hinted	
   at,	
   misspecification	
   is	
   a	
   likely	
   explanation	
   for	
  
TSN’s	
  result.	
  If	
  agents	
  are	
  uncertain	
  about	
  the	
  state,	
  so	
  that	
  they	
  are	
  
basing	
  their	
  decisions	
  on	
  forecasts	
  of	
  the	
  regime	
  in	
  the	
  following	
  pe-­‐‑
riod,	
  estimates	
  assuming	
  they	
  know	
  the	
  state	
  with	
  certainty	
  will	
  be	
  
inconsistent.	
   Accordingly,	
   in	
   their	
   second	
  model	
  TSN	
   assume	
   that	
  
neither	
  economic	
  agents	
  nor	
  the	
  econometrician	
  observe	
  the	
  states.	
  
In	
  each	
  period,	
  agents	
  form	
  probabilities	
  of	
  each	
  possible	
  state	
  in	
  the	
  
following	
  period	
  conditional	
  on	
  current	
  and	
  past	
  excess	
  returns,	
  and	
  
use	
   these	
  probabilities	
   in	
  making	
   their	
  portfolio	
  choices.	
  Each	
  pe-­‐‑
riod,	
   investors	
  update	
   their	
  prior	
  beliefs	
  about	
   that	
  period's	
  state	
  
with	
  current	
  information	
  using	
  Bayes'	
  rule,	
  as	
  in	
  Section	
  5.	
  The	
  pa-­‐‑
rameter	
  of	
  interest	
  is	
  then	
  the	
  increase	
  in	
  expected	
  return	
  necessary	
  
to	
   compensate	
   the	
   agents	
   for	
   a	
   given	
   percentage	
   increase	
   in	
   the	
  
prior	
  probability	
  of	
  the	
  high-­‐‑variance	
  state.	
  Agents'	
  portfolio	
  choice	
  
may	
  be	
  specified	
  as	
  a	
  simple	
  function	
  of	
  this	
  probability:	
  

	
   (9.C3)	
  
where	
  the	
  constant,	
   ,	
  represents	
  the	
  agents'	
  required	
  excess	
  re-­‐‑
turn	
  for	
  holding	
  an	
  asset	
  in	
  the	
  low-­‐‑variance	
  state.	
  Note	
  that	
  this	
  is	
  
an	
   intuitive	
   and	
   yet	
   ad-­‐‑hoc	
   model:	
   there	
   is	
   no	
   reason	
   for	
   	
   to	
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1
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t
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t

S
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depend	
  linearly	
  on	
  the	
  filtered	
  probability	
  of	
  a	
  high-­‐‑variance	
  state,	
  
.	
  Yet,	
  this	
  simple	
  model	
  means	
  that	
  agents	
  require	
  an	
  

increase	
  in	
  the	
  excess	
  return	
  in	
  period	
  t	
  when	
  faced	
  with	
  an	
  increase	
  
in	
  their	
  prior	
  probability	
  that	
  the	
  high-­‐‑variance	
  state	
  will	
  prevail	
  in	
  
that	
  period,	
  and	
  this	
  intuition	
  is	
  sufficiently	
  sound	
  for	
  the	
  model	
  to	
  
represent	
  a	
  starting	
  point.	
  In	
  fact,	
  TSN	
  generalize	
  slightly	
  this	
  model	
  
to	
  

.	
   (9.C4)	
  
TSN	
   are	
   able	
   to	
   sign	
   all	
   the	
   parameters	
   in	
   this	
   simple	
   empirical	
  
model.	
   The	
   stock	
  price	
   at	
   time	
   t	
   should	
   reflect	
   all	
   available	
   infor-­‐‑
mation.	
  This	
  requires	
  that	
  the	
  price	
  at	
  t	
  should	
  fall	
  below	
  its	
  value	
  at	
  

	
   if	
   some	
   new	
   unfavorable	
   information	
   about	
   fundamentals,	
  
such	
  as	
  an	
  increase	
  in	
  variance,	
  arrives	
  between	
   	
  and	
  t.	
  This	
  fall	
  
is	
  necessary	
  to	
  ensure	
  that	
  the	
  return	
  from	
  time	
  t	
  to	
   	
  is	
  expected	
  
to	
   be	
   higher	
   than	
  usual	
   so	
   as	
   to	
   compensate	
   stockholders	
   for	
   the	
  
added	
  risk.	
  According	
  to	
  this	
  scenario,	
  the	
  return	
  between	
   	
  and	
  
t	
  will	
  be	
  negative	
  on	
  average	
  for	
  those	
  periods	
  in	
  which	
  adverse	
  in-­‐‑
formation	
  is	
  newly	
  acquired,	
  and	
  positive	
  on	
  average	
  when	
  favora-­‐‑
ble	
   information	
   is	
  acquired.	
  This	
  means	
   that	
   the	
  coefficient	
   	
  at-­‐‑
tached	
  to	
   	
  represents	
  the	
  effect	
  when	
  agents	
  antici-­‐‑
pate	
  as	
  of	
  time	
   	
  that	
  the	
  return	
  of	
  time	
  t	
  will	
  be	
  drawn	
  from	
  the	
  
high-­‐‑variance	
   distribution.	
   According	
   to	
   standard	
   mean-­‐‑variance	
  
theory,	
  foreknowledge	
  of	
  a	
  high-­‐‑variance	
  should	
  be	
  compensated	
  by	
  
a	
   higher	
   expected	
   return.	
   The	
  predicted	
   variance	
   in	
   this	
  model	
   is	
  
simply	
  

	
   (9.C5)	
  

Thus	
  when	
   is	
  high,	
  because	
  

	
  (9C6)	
  

is	
   positive	
  when	
   ,	
   the	
   expected	
   excess	
   return	
  
should	
  be	
  positive	
  so	
  that	
  the	
  parameter	
   	
  is	
  positive.	
  On	
  the	
  other	
  
hand,	
   it	
   could	
  be	
   that	
   today's	
  high-­‐‑variance	
  state,	
   ,	
  was	
  not	
  
anticipated	
   in	
   the	
   previous	
   period.	
   In	
   this	
   case	
   	
   is	
  
small	
  so	
  that	
  the	
  average	
  return	
  between	
   	
  and	
  t	
  is	
  dominated	
  
by	
   .	
  During	
  a	
  period	
  in	
  which	
  agents	
  are	
  surprised	
  by	
  the	
  event	
  

1Pr( 1| )t tS -= Á
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,	
  the	
  stock	
  price	
  must	
  fall	
  below	
  what	
  would	
  have	
  been	
  seen	
  
had	
   	
   occurred	
   instead.	
   This	
   will	
   make	
   the	
   return	
   between	
  

and	
  t	
  lower	
  and	
  will	
  show	
  up	
  as	
  a	
  negative	
  value	
  for	
   .	
  Similar	
  
reasoning	
  suggests	
  that	
  if	
  the	
  variance	
  unexpectedly	
  decreases,	
  the	
  
return	
  between	
   	
  and	
  t	
  will	
  turn	
  out	
  to	
  be	
  higher	
  than	
  usual,	
  sug-­‐‑
gesting	
  that	
   	
  should	
  be	
  positive.	
  
TSN	
  also	
  manage	
  to	
  establish	
  the	
  sign	
  of	
  a	
  linear	
  combination	
  of	
  the	
  
parameters.	
  The	
  risk	
  premium	
  in	
  t	
  is	
  given	
  by	
  the	
  expected	
  value	
  of	
  
the	
  excess	
  return	
  conditional	
  on	
  the	
  current	
  information	
  set.	
  Thus,	
  
the	
  risk	
  premium	
  is	
  
	
   	
   (9.C7)	
  
If	
   agents	
   are	
   risk-­‐‑averse,	
   this	
   equation	
   should	
   always	
   be	
   positive	
  
and	
   increase	
  with	
   .	
  The	
  expectation	
  will	
   always	
  be	
  
positive	
   as	
   long	
   as	
   	
   and	
   .	
  Finally,	
   if	
   both	
   of	
   these	
  
conditions	
  hold	
  with	
  inequality	
  and	
   	
  then	
  

	
   (9.C8)	
  

i.e.,	
  the	
  risk	
  premium	
  will	
  increase	
  with	
  agents'	
  prior	
  probability	
  of	
  
the	
  high-­‐‑variance	
  state.	
  
When	
  estimated	
  on	
  S&P	
  500	
  monthly	
  data,	
  this	
  model	
  yields	
  param-­‐‑
eter	
  estimates	
  that	
  are	
  largely	
  consistent	
  with	
  asset	
  pricing	
  theory.	
  
The	
   estimates	
   ( ,	
   	
   and	
   )	
   provide	
  
support	
   for	
   a	
   risk	
   premium	
   rising	
   as	
   the	
   anticipated	
   level	
   of	
   risk	
  
rises.	
  If	
  the	
  agents	
  are	
  certain	
  that	
  next	
  period's	
  return	
  will	
  be	
  drawn	
  
from	
  the	
  low-­‐‑variance	
  density,	
  agents	
  anticipate	
  a	
  monthly	
  return	
  of	
  
5%	
  percent.	
  Likewise,	
  if	
  agents	
  are	
  certain	
  next	
  period's	
  return	
  will	
  
be	
  drawn	
  from	
  the	
  high-­‐‑variance	
  density,	
  then	
  agents	
  will	
  require	
  a	
  
monthly	
   return	
   of	
   180%	
   annually.	
   These	
   estimates	
   suggest	
   that	
  
agents	
  perceive	
  stocks	
  to	
  be	
  a	
  very	
  risky	
  asset	
  during	
  high-­‐‑variance	
  
periods.	
  The	
  unconditional	
  probability	
  of	
  the	
  high-­‐‑variance	
  state	
  is	
  
however	
  only	
  0.0352.	
  This	
  means	
  that	
  in	
  spite	
  of	
  that	
  180%	
  spike	
  in	
  
expectation	
  during	
  high-­‐‑variance	
  regimes,	
  the	
  risk	
  premium	
  will	
  av-­‐‑
erage	
  approximately	
  9%	
  on	
  an	
  annual	
  basis.	
  This	
  number	
  is	
  close	
  to	
  
the	
  average	
  excess	
  return	
  observed	
  in	
  the	
  data,	
  7.5%.	
  However,	
  one	
  
problem	
  remains:	
  because	
   ,	
  the	
  risk	
  premium	
  
does	
   not	
   increase	
   with	
   anticipated	
   variance;	
   the	
   variance	
   of	
   the	
  

1tS =
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linear	
  combination	
  is	
   large	
  in	
  relation	
  to	
  the	
  point	
  estimate,	
   the	
  t-­‐‑
statistic	
  is	
  -­‐‑0.21,	
  so	
  that	
  the	
  model	
  provides	
  no	
  evidence	
  for	
  a	
  risk	
  
premium	
  changing	
  proportionally	
  or	
   inversely	
  with	
  variance.	
  This	
  
result	
  is	
  consistent	
  with	
  evidence	
  as	
  early	
  as	
  French,	
  Schwert,	
  and	
  
Stambaugh's	
   (1987)	
  who	
  also	
   find	
   little	
  evidence	
  of	
  a	
   relation	
  be-­‐‑
tween	
  the	
  risk	
  premium	
  and	
  volatility.	
  
	
  	
  
	
  

On-­‐‑Line	
  Ex.	
  9D.	
   (Non-­‐‑Normalities	
  under	
  MS	
  Mixture:	
   Implied	
  Conditional	
  Mo-­‐‑
ments)	
  Some	
  insights	
  may	
  be	
  gained	
  from	
  considering	
  a	
  simple	
  uni-­‐‑
variate	
  MSIH(2)	
  model	
  written	
  as	
  

	
  (9.D1)	
  
in	
  which	
   	
  is	
  unobservable	
  at	
  all	
  points	
  in	
  time.	
  You	
  can	
  eas-­‐‑
ily	
  see	
  that	
  in	
  this	
  special	
  case,	
   	
  reproduces	
  the	
  
regime-­‐‑dependence	
   in	
   ;	
   the	
   same	
   applies	
   to	
  

.	
  
Let's	
  start	
  by	
  checking	
  moments	
  for	
  the	
  benchmark,	
  single-­‐‑regime	
  
case	
   in	
   which	
   .	
   Because	
   these	
   will	
   be	
   important	
   below,	
   we	
  
compute	
  both	
  unconditional	
  and	
  conditional	
  moments.	
  When	
  
,	
  it	
  is	
  as	
  if	
   	
  always,	
  which	
  means	
  there	
  is	
  only	
  one	
  regime	
  and	
  
	
  and	
   may	
   lose	
   the	
  pedix	
   that	
   refers	
   to	
   the	
   regime.	
  Therefore,	
  

when	
  we	
  perform	
  calculations	
  for	
  time	
  t	
  conditional	
  moments	
  and	
  
for	
  unconditional	
  moments,	
  respectively,	
  we	
  have:	
  

	
  

1 1 1 1 0 1 1 1 0 1 1(1 ) [ (1 ) ] 	
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  (9.D2)	
  

Because	
   ,	
   	
  and	
   	
  is	
  constant,	
  we	
  have	
  
that	
   	
  has	
  a	
  normal	
  conditional	
  and	
  unconditional	
  distribution.	
  
Things	
  are	
  a	
  tad	
  more	
  involved	
  when	
   .	
  In	
  this	
  case,	
  when	
  you	
  
apply	
  the	
  conditioning,	
  you	
  will	
  also	
  need	
  to	
  condition	
  with	
  respect	
  
to	
  the	
  current	
  state,	
   :	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  (9.D3)	
  
where	
   	
  is	
  the	
  unconditional	
  probability	
  of	
  regime	
  1,	
  and	
   	
  
is	
   the	
   unconditional	
   probability	
   of	
   regime	
   2.3	
   Insofar	
   as
                                                                                                                          
3	
   The	
   reason	
   for	
   	
   is	
  
that	
  given	
   ,	
   is	
  independent	
  of	
  any	
  other	
  random	
  variable	
  indexed	
  
at	
  time	
   ,	
  and	
  in	
  particular	
   	
  is	
  independent	
  of	
   	
  (just	
  think	
  of	
  
the	
  way	
  we	
  have	
  simulated	
  returns	
  from	
  MS	
  in	
  Section	
  2	
  of	
  Chapter	
  9	
  in	
  
the	
   textbook).	
   Moreover,	
   	
   be-­‐‑
cause	
   	
   by	
   construction.	
   The	
   same	
   applies	
   to	
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t t t t t t t t

t t t t t t t t

t t t t

t t t t
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E y S E S S S S z S
E S S E S S E S S E z S
E S S E z S
S S S S

E y E S S

µ µ s s
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µ µ

µ

+ + + + + +

+ + + +

+ +

+ +

+ + +

= + - + + -

= + - + +

+ -

= = + - =

= + - 0 1 1 1 0 1

1 1 1 0 1 1 1 1 0 1

1 1 1 0

( (1 ) ) ]
[ ] [(1 )] [ ] [ ] [(1 )] [ ]

(1 )

t t t

t t t t t t

S S z
E S E S E S E z E S E z

µ s s
µ µ s s

x µ x µ

+ + +

+ + + + + +

+ + -

= + - + + -

= + -

1x 1(1 )x-

1 1 1 1[ | ] [ | ] [ | ] 0	
  	
  	
   0,1t j t t t t j t tE S z S E S S E z S js s+ + + += = =

tS 1tS +

1t + 1tS + 1tz +

1 1 1 1 1 1[ | ] [ | ] [ ] 0t t t t tE z S E z S E zs s s+ + += = =
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  and	
   ,	
  	
  
clearly	
   	
  as	
  the	
  first	
  moment	
  will	
  be	
  a	
  time-­‐‑vary-­‐‑
ing	
  one.	
  As	
  for	
  variances:	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   (9.D4)	
  
because	
   .	
  Instead	
  

	
  

(9.D5)	
  

In	
  both	
  cases,	
  notice	
  that	
  

	
   	
   (9.D6)	
  

with	
   the	
   difference	
   represented	
   by	
   the	
   terms	
  	
  
	
   in	
   the	
  case	
  of	
   the	
  condi-­‐‑

tional	
  variance	
  and	
   	
   in	
   the	
  case	
  of	
   the	
  uncondi-­‐‑
tional	
  variance.	
  This	
  means	
   that	
   in	
  a	
  MSIH(2)	
  model,	
  not	
  only	
   the	
  
regime-­‐‑specific	
  variances	
  will	
  be	
  weighted	
   in	
   the	
  overall	
  variance	
  
across	
  regimes,	
  but	
  also	
  the	
  (squared)	
  size	
  of	
  the	
  between-­‐‑regime	
  
jumps	
  in	
  regime-­‐‑specific	
  means,	
   ,	
  will	
  contribute	
  to	
  the	
  vari-­‐‑
ability	
  of	
  the	
  process.	
  
We	
  now	
  move	
  to	
  compute	
  conditional	
  and	
  unconditional	
  skewness:	
  

                                                                                                                          
. 

1 1Pr( | )t tS Sx +¹ 1 1(1 ) 1 Pr( | )t tS Sx +- ¹ -

1 1[ | ] [ ]t t tE R S E R+ +¹

2
1 1 1 1 1 1 1 1 0

2
1 0 0 1 1 1 1 0

1 1 1 0 1 1

[ ] Pr( 1| ) [( Pr( 1| ) (1 Pr( 1| )) ) | ]

	
  	
  	
  	
  	
   Pr( 0| ) [( Pr( 1| ) (1 Pr( 1| )) ) | ]

Pr( 1| ) [((1 Pr( 1| ))( )
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t t t t t
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µ s µ µ
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= = + - = - - = +

+ = + - = - - =

= = - = - + 2

2
1 1 0 1 0 1

2 2 2
1 1 1 0 1 1 1 0

) | ]

	
  	
  	
  	
  	
   Pr( 0| ) [(Pr( 1| )( ) ) | ]

Pr( =1| ) (1 Pr( =1| )) Pr( =1| )(1 Pr( =1| ))( )

t

t t t t t t

t t t t t t t t

S

S S E S S z S

S S S S S S S S

µ µ s

s s µ µ
+ + +

+ + + +

+

+ = = - +

= + - + - -

1 1[(1 Pr( 1| )) (Pr( 1| ))] 1t t t tS S S S+ +- = + = =
2

1 1 1 1 1 1 1 1 0
2

1 0 0 1 1 1 1 0
2 2

1 1 1 0 1 1 1 1 1 0 0 1

[ ] [( (1 ) ) ]

(1 ) [( (1 ) ) ]

[((1 )( ) ) ] (1 ) [ ( ) ) ]

t t

t

t t

Var y E z

E z

E z E z

x µ s x µ x µ

x µ s x µ x µ

x x µ µ s x x µ µ s

+ +

+

+ +

= + - - - +

+ - + - - -

= - - + - - - +
2 2 2 2 2 2

1 1 1 0 1 1 1 0 1 1 1 0
2 2 2

1 1 1 0 1 1 1 0

(1 ) ( ) (1 ) ( ) (1 )

(1 ) (1 )( ) .

x x µ µ x x µ µ x s x s

x s x s x x µ µ

= - - + - - + + -

= + - + - -

2 2
1 1 1 1 0

2 2
1 1 1 1 0

[ ] Pr( 1| ) (1 Pr( 1| ))

[ ] (1 ) ,
t t t t t t

t t

Var y S S S S

Var y

s s

x s x s
+ + +

+

¹ = + - =

¹ + -

2
1 1 1 0Pr( 1| )(1 Pr( 1| ))( )t t t tS S S S µ µ+ += - = -

2
1 1 1 0(1 )( )x x µ µ- -

1 0µ µ-

1 1 1 1[ ] [ ] [ ]t j t t j tE S z E S E zs s+ + + += 0	
  	
   0,1j= =
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   (9.D7)	
  
where	
   , ,

so	
  that	
  

(9.D8)	
  

where	
   we	
   have	
   shortened	
   the	
   notation	
   by	
   defining	
  
.	
  Similarly,	
  straightforward	
  but	
  tedious	
  alge-­‐‑

bra	
  reveals	
  that	
  

	
  (9.D9)	
  

This	
  finding	
  is	
  very	
  interesting:	
  

	
   	
   (9.D10)	
  

i.e.,	
  you	
  need	
  switching	
  in	
  conditional	
  means	
  in	
  order	
  for	
  non-­‐‑zero	
  
skewness	
  to	
  obtain.	
  However,	
  it	
  is	
  also	
  clear	
  that	
  even	
  when	
  µ1¹µ0	
  it	
  
is	
  possible	
  for	
  both	
  conditional	
  and	
  unconditional	
  skewness	
  coeffi-­‐‑
cient	
  to	
  be	
  zero	
  when	
  (this	
  is	
  just	
  a	
  sufficient	
  condition):	
  
(i)	
   	
   or	
   ;	
   (ii)	
   	
   or	
   .	
   The	
   two	
   sets	
  of	
   re-­‐‑

strictions	
   do	
   not	
   carry	
   the	
   same	
  meaning	
   though,	
   as	
   	
   or	
   1	
  

3
1 1 1 1 1 1 1 1

3
1 0 1 0 0 1

3
1 1 1 0

3
1 1

[( [ ]) ] Pr( =1| ) [( Pr( =1| )

	
  	
  	
  	
  	
   (1 Pr( =1| )) ) | ] Pr( 0| ) [(

	
  	
  	
  	
  	
   Pr( 1| ) (1 Pr( 1| )) ) | ]

Pr( 1| )(1 Pr( 1| ))

t t t t t t t t t

t t t t t t

t t t t t

t t t t
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µ s µ
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µ µ
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- = + - +
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( ) (1 Pr( 1| ))
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µ µ

µ µ s s
+
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2 2

1 1 1 0 1 1
2 2

1 1 1 0 0 1
3 2

1 1 1 0 1
2

1

	
  	
  	
  	
  	
   3Pr( 1| )(1 Pr( 1| ))( ) [ | ]

	
  	
  	
  	
  	
   3Pr( 1| )(1 Pr( 1| ))( ) [ | ]

Pr( 1| )(1 Pr( 1| ))( ) [(1 Pr( 1| ))

	
  	
  	
  	
  	
   (Pr( 1| )) ]

t t t t t t

t t t t t t
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t t

S S S S E z S
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+ + +

+
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- = - = -

= = - = - - = +

- = + 2 2
1 1 1 0 1 03Pr( 1| )(1 Pr( 1| ))( )( )t t t tS S S S µ µ s s+ += - = - -

3
1[ | ] 0t tE z S+ = 2

1[ | ] 1t tE z S+ = 2
1[(1 Pr( 1| ))t tE S S+- =

2
1 0 1 1( ) | ]t tz Sµ µ s +- = 2

1[(Pr( 1| ))t tE S S+ = 2
0 1( )µ µ- 0 1 | ] 0t tz Ss + =
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1 1 0

2 2 2 2 2
1, 1 1, 1 1 0 1, 1 1, 1 1 0

2 2 2 3/2
1, 1 1 1, 1 0 1, 1 1, 1 1 0

[ ] ( )

(1 ) ( ) [(1 ) ] 3( )
	
  	
  	
  	
  	
  	
  	
  	
  

[ (1 ) (1 )( ) ]

t t

t t t t

t t t t

Skewness y µ µ

x x µ µ x x s s

x s x s x x µ µ

+

+ + + +

+ + + +

= - ´

- - - - + -
´

+ - + - -

1, 1 1Pr( 1| )t t tS Sx + +º =

1 1 0
2 2 2 2 2

1 1 1 0 1 1 1 0
2 2 2 3/2
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[ ] ( )

(1 )[( ) [(1 ) ] 3( )]	
  	
  	
  	
  	
  	
  	
  	
   .
[ (1 ) (1 )( ) ]

tSkewness R µ µ

x x µ µ x x s s
x s x s x x µ µ

+ = - ´

- - - - + -
´

+ - + - -

1 1 0

1 1 0

[ ] 0	
  if	
  and	
  only	
  if	
  
[ ] 0	
  if	
  and	
  only	
  if	
   ,
t t

t

Skewness y
Skewness y

µ µ
µ µ

+

+

¹ ¹

¹ ¹

1, 1 0tx + = 1 0x = 1, 1 1tx + = 1 1x =

1 0x =
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really	
  means	
  we	
  are	
  not	
  facing	
  a	
  MS	
  model,	
  in	
  the	
  sense	
  that	
  the	
  un-­‐‑
derlying	
  MC	
  may	
  be	
  clearly	
  reduced	
  to	
  a	
  single	
  state,	
  while	
   	
  
or	
  1	
  just	
  means	
  that	
  as	
  of	
  time	
  t	
  you	
  are	
  certain	
  that	
  in	
  the	
  following	
  
period	
  you	
  are	
  either	
  in	
  the	
  first	
  regime	
  or	
  in	
  the	
  second.4	
  
Finally,	
  we	
  deal	
  with	
  conditional	
  and	
  unconditional	
  excess	
  kurtosis:	
  	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  (9.D11)	
  
where	
   ,	
   ,	
   ,	
  so	
  that	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  (9.D12)	
  
Similarly,	
  straightforward	
  but	
  tedious	
  algebra	
  reveals	
  that	
  

                                                                                                                          
4	
   If	
   that	
   seems	
   more	
   plausible,	
   consider	
   that	
  

	
   which	
   can	
   be	
   1	
   if	
   and	
   only	
   if	
   either	
  
	
   (but	
   that	
   means	
   that	
   ),	
  

	
  (but	
  that	
  means	
  that	
   ),	
  or	
  the	
  sum	
  happens	
  to	
  
be	
  one.	
  The	
  first	
  two	
  cases	
  do	
  indicate	
  problems	
  with	
  the	
  irreducibility	
  of	
  
the	
  MC.	
  The	
  third	
  case	
  is	
  more	
  interesting.	
  If	
  	
  

	
  
where	
   ,	
  this	
  means	
  that	
  as	
  of	
  time	
  t	
  we	
  are	
  forecasting	
  with	
  cer-­‐‑
tainty	
  that	
  time	
  t+1	
  will	
  be	
  dominated	
  by	
  regime	
  1.	
  That	
  is	
  rather	
  odd	
  as	
  it	
  
implies	
  a	
  very	
  precise	
  periodicity	
  of	
  the	
  underlying	
  MC.	
  

1, 1 0tx + =

4
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4
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4
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1 1
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   6Pr( =1| )(1 Pr( =1| ))( ) [(1 Pr( =1| ))
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t t t t
t t
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t t

ExKurt R
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+
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+
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=
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+
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00(1 )Pr( 0| ) 1t tp S- = Á = 00 0p =
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   (9.D13)	
  

This	
   finding	
   is	
  once	
  more	
  very	
   interesting.	
  First	
  of	
  all,	
  notice	
   that	
  
also	
  in	
  this	
  case,	
  when	
   ,	
  

	
  (9.D14)	
  

which	
  is	
  less	
  than	
  the	
  expression	
  found	
  above:	
  MS	
  dynamics	
  means	
  
simply	
  adds	
  to	
  the	
  excess	
  kurtosis	
  of	
  a	
  series.	
  Moreover,	
  in	
  this	
  case	
  
MS	
  will	
  generate	
  positive	
  excess	
  kurtosis	
  if	
  and	
  only	
  if	
  	
  

	
   	
  (9.D15)	
  

Moreover,	
  notice	
  that	
  if	
  one	
  also	
  has	
   ,	
  then	
  

	
   	
   (9.D16)	
  

as	
  it	
  should	
  be	
  because	
  when	
   	
  and	
   ,	
  there	
  is	
  no	
  MS	
  
left	
  in	
  the	
  process.	
  
Because	
  in	
  the	
  single-­‐‑regime	
  case,	
  the	
  normality	
  of	
  the	
  shocks	
   	
  
carries	
  over	
  to	
  the	
  series	
  investigated,	
  it	
  is	
  sensible	
  to	
  ask	
  what	
  are	
  
the	
  conditional	
  and	
  unconditional	
  distributions	
  of	
  returns	
  under	
  the	
  
two-­‐‑state	
  MS	
  process.	
  Here	
  the	
  point	
  is	
  that	
  even	
  a	
  simple	
  two-­‐‑state	
  
MSIH	
  model	
  such	
  as	
  the	
  one	
  in	
  this	
  section,	
  may	
  generate	
  substantial	
  
departures	
  from	
  normality.	
  Given	
  a	
  MS	
  model,	
  it	
  is	
  clear	
  that	
  condi-­‐‑
tioning	
  on	
   —which	
  is	
  equivalent	
  to	
  say	
  that	
  either	
  the	
  regime	
  
is	
   observable	
   (but	
   this	
   violates	
   our	
   assumptions)	
   or	
   that,	
   again	
  
oddly,	
   	
   may	
   be	
   perfectly	
   predicted—	
   	
  
which	
   is	
  a	
   simple	
  Gaussian	
  distribution.	
  However,	
   in	
  a	
  MS	
  model,	
  

	
  is	
  unobservable,	
  while	
  the	
  case	
  in	
  which	
   	
  may	
  be	
  perfectly	
  

{

}
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predicted	
   given	
   time	
   t	
   information	
   appears	
   to	
   be	
   bizarre.	
   In	
   fact,	
  
even	
  if	
  you	
  were	
  to	
  somehow	
  know	
  what	
  the	
  current,	
  time	
  t	
  regime
	
   is,	
   notice	
   that	
   in	
   general	
   	
   represents	
   the	
   ge-­‐‑

neric	
   	
  element	
  of	
  the	
  transition	
  matrix	
  P.	
  If	
  the	
  Markov	
  chain	
  is	
  
ergodic	
   and	
   irreducible,	
   we	
   know	
   that	
   ,	
  

.	
  Because	
  of	
  this	
  fact	
  the	
  conditional	
  distribution	
  of	
   	
  is:	
  

	
   	
  	
  	
  (9.D17)	
  

where	
   	
   is	
   a	
   normal	
  density	
   function	
  with	
  mean	
   	
   and	
  
variance	
   .	
  As	
  we	
  know	
  from	
  Definition	
  9.2,	
  the	
  density	
  in	
  (9.D17)	
  
is	
   a	
   mixture,	
   with	
   probabilistic	
   and	
   time-­‐‑varying	
   weights	
  

,	
   ,	
  of	
  two	
  normal	
  densities	
  and	
  it	
  is	
  
not	
   itself	
  a	
  normal	
  density.	
  Therefore,	
  even	
  conditioning	
  on	
  time	
  t	
  
information	
  and	
  on	
  knowledge	
  (still	
  difficult	
  to	
  obtain)	
  of	
  the	
  cur-­‐‑
rent	
  state	
   ,	
  returns	
  in	
  a	
  two-­‐‑state	
  MS	
  will	
  not	
  have	
  a	
  normal	
  dis-­‐‑
tribution,	
  unless	
   	
  and	
   ,	
  when	
  (trivially)	
  

(9.D18)	
  

In	
   fact,	
  we	
  note	
   that	
  when	
   	
   and	
   ,	
   from	
  results	
   ob-­‐‑
tained	
  above	
  we	
  have	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  (9.D19)	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  (9.D20)	
  
which	
  is	
  consistent	
  with	
  the	
  conclusion	
  that	
   	
  follows	
  a	
  normal	
  
distribution.	
  
As	
  for	
  the	
  unconditional	
  density	
  of	
   ,	
  i.e.,	
  the	
  density	
  that	
  does	
  
not	
  condition	
  on	
  any	
  precise	
  prior	
  information,	
  it	
  is	
  logical	
  to	
  state	
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that	
  absent	
  any	
  information	
  on	
  either	
   	
  or	
  at	
  least	
   ,	
  the	
  
best	
  assessment	
  we	
  can	
  make	
  of	
  each	
  of	
  the	
  regimes	
  is	
  simply	
  that	
  	
  

	
  and	
   .	
  Therefore,	
  on	
  average,	
  in	
  the	
  
population,	
  the	
  data	
  will	
  come	
   	
  percent	
  of	
  the	
  time	
  from	
   	
  
and	
   	
  percent	
  of	
  the	
  time	
  from	
   .	
  The	
  result	
  is	
  that	
  the	
  
unconditional	
  distribution	
  of	
   	
  is:	
  

	
   	
   	
  	
  	
  (9.D21)	
  
which	
  is	
  another	
  mixture	
  (in	
  this	
  case,	
  not	
  time-­‐‑varying,	
  being	
  un-­‐‑
conditional)	
  of	
  two	
  normal	
  distributions	
  and	
  that,	
  as	
  we	
  know,	
  this	
  
will	
  imply	
  (assuming	
   )	
  

(9.D22)	
  

Additionally,	
  when	
   ,	
  notice	
  that	
  even	
  the	
  variance	
  of	
   	
  
fails	
  to	
  simply	
  be	
  the	
  probability-­‐‑weighted	
  average	
  of	
   	
  and	
   	
  
because,	
  as	
  we	
  know,	
   	
  
The	
  on-­‐‑line	
  Example	
  9E	
  puts	
  this	
  ideas	
  to	
  work	
  in	
  an	
  application	
  to	
  
Value-­‐‑at-­‐‑Risk	
  calculations,	
  showing	
  how	
  dealing	
  with	
  moments	
  and	
  
densities	
  derived	
  from	
  MS	
  models	
  requires	
  a	
  degree	
  of	
  familiarity	
  
with	
  Monte	
  Carlo	
  simulation	
  techniques.	
  
For	
  instance,	
  Rydèn,	
  Teräsvirta,	
  and	
  Åsbrink	
  (1998)	
  show	
  that	
  MS	
  
mixtures	
  estimated	
  on	
  daily	
  S&P	
  500	
  returns	
  for	
  a	
  long1928–1991	
  
sample	
   closely	
   reproduces	
   a	
   range	
   of	
   properties	
   of	
   asset	
   returns	
  
previously	
  emphasized	
  in	
  the	
  literature	
  (see	
  Chapter	
  5	
  and	
  Granger	
  
and	
  Ding,	
   1995):	
   returns	
   are	
  not	
   autocorrelated	
   in	
   levels	
   (except,	
  
possibly,	
  at	
  lag	
  one);	
  the	
  autocorrelation	
  functions	
  of	
  absolute	
  and	
  
squared	
  returns	
  decay	
  slowly	
  starting	
  from	
  the	
  first	
  autocorrelation	
  

and	
   	
  for	
   ;	
  the	
  decay	
  
in	
   the	
  autocorrelation	
  functions	
  of	
   squares	
  and	
  absolute	
  values	
  of	
  
returns	
   is	
  much	
   slower	
   than	
   the	
   exponential	
   rate	
   of	
   a	
   stationary	
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AR(l)	
  or	
  ARMA(p,q)	
  model;	
  the	
  autocorrelations	
  of 	
  are	
  in-­‐‑
significant;	
  moreover,	
   	
  and	
   	
  are	
  independent.	
  
	
  	
  
	
  

On-­‐‑Line	
  Ex.	
  9E.	
   (Value-­‐‑at-­‐‑Risk	
   in	
  MS	
  Models)	
  As	
   a	
   case	
  of	
   the	
  effectiveness	
   and	
  
benefits	
  of	
  MS	
  modelling	
  in	
  risk	
  management	
  applications,	
  consider	
  
again	
  the	
  simple	
  univariate	
  MSIH(2)	
  model,	
  

	
  
in	
  which	
   ,	
  1	
  is	
  unobservable	
  at	
  all	
  points	
  in	
  time.	
  In	
  the	
  limit	
  
case	
  in	
  which	
  K	
  =	
  1,	
  which	
  is	
  a	
  benchmark	
  single-­‐‑state	
  linear	
  model,	
  
to	
  compute	
  (say)	
  1%	
  VaR	
  is	
  straightforward:	
  

(9.E1)	
  

so	
  that,	
  after	
  defining	
   	
  as	
  the	
  inverse	
  CDF	
  of	
  a	
  standard	
  nor-­‐‑
mal	
  distribution,	
  we	
  have:	
  

(9.E2)	
  

Now,	
  moving	
  to	
  the	
  K	
  =	
  2	
  case,	
  let's	
  start	
  from	
  an	
  approximate	
  way	
  
to	
  look	
  at	
  the	
  problem	
  of	
  computing	
  1%	
  VaR:	
  one	
  colleague	
  in	
  your	
  
risk	
  management	
  department	
  is	
  proposing	
  to	
  use	
  the	
  following	
  con-­‐‑
ditional	
  1%	
  VaR	
  measure:	
  

(9.E3)	
  

in	
  which	
  the	
  colleague	
  is	
  obviously	
  conditioning	
  with	
  respect	
  to	
  the	
  
current	
  state,	
   	
  but	
  still	
  applying	
  a	
  normal	
  distribution	
  result.	
  Un-­‐‑
fortunately,	
  you	
  should	
  not	
  agree	
  with	
  his/her	
  proposal,	
  or	
  at	
  least	
  
should	
  clarify	
  to	
  the	
  team	
  that	
  this	
  is	
  simply	
  an	
  approximation.	
  The	
  
reason	
  is	
  that	
  in	
  Section	
  8.3	
  of	
  the	
  book	
  we	
  have	
  found	
  that	
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   (9.E4)	
  
and	
  that	
   	
  does	
  not	
  follow	
  a	
  Normal	
  distribution,	
  but	
  a	
  prob-­‐‑
ability-­‐‑weighted	
  mixture	
  of	
  two	
  normal	
  distributions	
  which	
  is	
  itself	
  not	
  
a	
  Normal	
  distribution.	
  As	
  a	
  result,	
  the	
  way	
  of	
  proceeding	
  to	
  VaR	
  calcu-­‐‑
lations	
  proposed	
  by	
  the	
  colleague	
  may	
  turn	
  out	
  to	
  be	
  grossly	
  incorrect	
  
as	
  it	
  employs	
   ,	
  where	
  the	
  use	
  of	
  the	
  standard	
  normal	
  CDF	
  was	
  

previously	
   coming	
   from	
   the	
   fact	
   that	
   .	
   When	
   this	
   as-­‐‑
sumption	
  breaks	
  down,	
  the	
  procedure	
  is	
  clearly	
  invalid.	
  Moreover,	
  you	
  
know	
  from	
  Section	
  3	
  of	
  Chapter	
  8	
  that	
  	
  

	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  (9.E5)	
  
unless	
   ,	
  which	
  is	
  generally	
  not	
  the	
  case	
  in	
  a	
  MSIH(2,0)	
  model.	
  
After	
   you	
  have	
  made	
   your	
   objection	
   during	
   his	
   presentation,	
   this	
  
colleague	
  of	
  yours	
  revises	
  his/her	
  proposal	
  to	
  use	
  the	
  following	
  con-­‐‑
ditional	
  1%	
  VaR	
  measure:	
  

	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  (9.E6)	
  
Your	
  reaction	
   should	
   remain	
  negative:	
   unfortunately,	
  making	
   one	
  
claim	
  less	
  wrong	
  does	
  not	
  make	
  it	
  correct.	
  Even	
  though	
  it	
  is	
  now	
  cor-­‐‑
rect	
  that	
  	
  

(9.E7)	
  

the	
  fact	
  remains	
  that	
  	
  

	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  (9.E8)	
  
so	
  that	
  VaR	
  cannot	
  be	
  computed	
  in	
  that	
  simply	
  way.	
  
Finally,	
   it	
   seems	
   time	
   for	
  you	
   to	
  suggest	
  how	
  this	
   should	
  be	
  done	
  
correctly.	
  Here	
  you	
  may	
  be	
  in	
  trouble,	
  though:	
  unfortunately	
  there	
  
is	
  no	
  closed-­‐‑form	
  solution	
  which	
  means	
  that	
  you	
  will	
  have	
  to	
  resort	
  
to	
  simulation-­‐‑based	
  (Monte	
  Carlo)	
  methods.	
  The	
  problem	
  is	
  that	
  	
  

	
  (9.E9)	
  

1( | )t tf R + Á

1(0.01)-F
2

1 ( , )tR N µ s+ ~

2 2 2
1 1 1 1 0 1 1 1 0

2 2
1 1 1 0

[ ] Pr( =1| ) (1-­‐‑Pr( =1| )) Pr( =1| )(1-­‐‑Pr( =1| ))( -­‐‑ )

Pr( 1| ) (1 Pr( 1| ))
t t t t t t t t t t

t t t t

Var R S S S S S S S S

S S S S

s s µ µ

s s
+ + + + +

+ +

= + +

¹ = + - =

0 1µ µ=

0.01 2 2
1 1 1 1 0 1 1

2 1
1 0 1 1 1 0

( 2) [Pr( =1| ) (1-­‐‑Pr( 1| )) Pr( =1| )(1-­‐‑Pr( =1| ))

( ) ] (0.01) Pr( 1| ) (1 Pr( 1| )) .
t t t t t t t t t

t t t t

VaR K S S S S S S S S

S S S S

s s

µ µ µ µ
+ + + + +

-
+ +

= = - + = + ´

´ - F - = + - =é ùë û

2 2
1 1 1 1 0

2
1 1 1 0

[ ] Pr( =1| ) (1 Pr( =1| ))

Pr( =1| )(1 Pr( =1| ))( ) ,
t t t t t t

t t t t

Var R S S S S

S S S S

s s

µ µ
+ + +

+ +

= + - +

+ - -

2 2
1 1 1 1 1 1 0 0

1 1 1 0
2 2 2

1 1 1 0 1 1 1 0

( | ) ( | ) Pr( 1| ) ( , ) (1 Pr( 1| )) ( , )
( Pr( =1| ) (1-­‐‑Pr( =1| )) ,

[Pr( =1| ) (1-­‐‑Pr( =1| )) ] Pr( =1| )(1-­‐‑Pr( =1| ))( ) )

t t t t t t t t

t t t t

t t t t t t t t

f R f R S S S S S

S S S S

S S S S S S S S

f µ s f µ s

f µ µ

s s µ µ

+ + + +

+ +

+ + + +

Á = = = + - =

¹ +é ùë û

+ + -

2 2
1 1 1 1 1 0 0( | ) Pr( 1| ) ( , ) (1 Pr( 1| )) ( , )t t t t t tf R S S S S Sf µ s f µ s+ + += = + - =
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fails	
  to	
  have	
  a	
  closed-­‐‑form	
  representation	
  and	
  as	
  such	
  it	
  impossible	
  
to	
  simply	
  draw	
  from	
  some	
  well-­‐‑specified	
  PDF	
  or	
  CDF.	
  This	
  means	
  
that	
  your	
  proof	
  of	
  the	
  functional	
  form	
  of	
  1%	
  VaR	
  in	
  	
  

(9.E10)	
  

simply	
  fails	
  because	
  it	
  is	
  not	
  true	
  that	
   	
  
can	
  be	
  measured	
  using	
   .	
  What	
  you	
  can	
  do	
  is	
  the	
  following.	
  First,	
  
simulate	
  a	
   large	
  number	
  M	
  of	
  one-­‐‑month	
  returns	
  assuming	
   	
  
from	
  	
  

	
  (9.E11)	
  
when	
   	
   with	
   probability	
   	
   and	
   	
   with	
  
probability	
   .	
   Call	
   these	
   M	
   one-­‐‑month	
   ahead	
   returns	
  

.5	
  Second,	
  simulate	
  a	
   large	
  number	
  M	
  of	
  one-­‐‑month	
  

returns	
  assuming	
   	
  from	
  	
  
	
  

(9.E12)	
  
When	
   	
  with	
  probability	
   	
  and	
   	
  with	
  probability

.	
  Call	
  these	
  M	
  one-­‐‑month	
  ahead	
  returns	
   .	
  Fi-­‐‑

nally,	
  you	
  need	
  to	
  aggregate	
  this	
  2M	
  simulations	
  in	
  a	
  unique	
  set,	
  us-­‐‑
ing:	
  

	
  
(9.E13)	
  

                                                                                                                          
5This	
  means	
  that	
  when	
   	
  you	
  will	
  simulate	
  from	
   ;	
  
when	
   	
  you	
  will	
  simulate	
  from	
   .	
  How	
  do	
  you	
  sim-­‐‑
ulate	
  a	
  two-­‐‑point	
  (also	
  called	
  Bernoulli)	
  random	
  variable	
  that	
  takes	
  value	
  
1	
  with	
  probability	
   	
  and	
  0	
  with	
  probability	
   ?	
  Simple,	
  you	
  draw	
  a	
  
uniform	
  defined	
  on	
  [0,1]	
  and	
  you	
  set	
   	
  if	
  the	
  uniform	
  draw	
  is	
  less	
  
than	
  (or	
  equal	
  to)	
   ,	
  and	
  you	
  set	
   	
  otherwise.	
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At	
  this	
  point,	
  your	
  1%	
  VaR	
  will	
  be	
  simply	
  defined	
  as:	
  the	
  simulated	
  

returns	
  in	
  the	
  set	
   	
   that	
   leaves	
  exactly	
  1%	
  of	
  your	
  total	
  M	
  

simulations	
   (after	
   your	
   aggregation	
   step,	
   i.e.,	
  M/100	
   simulations,	
  
which	
  better	
  be	
  an	
  integer)	
  below	
  the	
  1%	
  VaR	
  value.	
  
	
  
	
  

{ }1 1

Mm
t m
R +

=


