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The Goal
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 In this lab we try to model and forecast real stock returns and real
dividend growth contrasting what can be done in univariate vs. 
multi-variate (here, bivariate) models

 We extend the evidence to a famous fundamental stock market 
indicator, much debated by pundits and economists, the cyclically 
adjusted price-earnings ratio over 10 years (CAPE-10)
o Important: CAPE has nothing to do with CAPEX!

 Because the data are kindly made available to the public by Prof. 
and Nobel laureate Robert Shiller and CAPE has been proposed by 
him and co-authors, this lab is 
inspired by his work

 Even though in this lab we use
U.S. data only, there is ample
international research on the
forecasting power of CAPE for
(inflation-adjusted) stock
returns



The Data

3

 We shall use a January 1881 – December 2018 monthly sample, for 
a total of 1,656 observations
o Once more, not a big problem to obtain large samples in finances
o We are on the verge of dealing with economic history here

 Three different series analyzed/commented
o The discretely compounded (real) returns on the Standard & Poor’s 

Composite index (that became S&P 500 in 1957) deflated using the 
CPI inflation index

o The discretely compounded rate of growth of the (real) dividends paid 
by the companies in the S&P index, deflated using CPI inflation

o The CAPE index, i.e., the ratio btw. the real S&P index and the average 
of the moving average of the last 10 years of real earnings reported by 
companies in the S&P index, a long-run, average real PE ratio

o CAPE is use to forecast stock returns over timescales of 10 to 20 years, 
with higher than average CAPE values implying lower than average 
long-term annual average returns
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Akaike	Information	Criteria	(top	20	models)

Step 1: Model Specification (S&P Returns)
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 A systematic search across ARIMA(p, d, q) with p ≤ 8, d ≤ 1, q ≤ 8 
using AIC as a selection criteria points to large ARMA(6, 5) model 
o However, the very table reveals that BIC and H-Q would lead to the 

selection of much smaller models
o Such evidence in favor of large, rich ARMA models is unusual but we 

need to remember that we are using 138 years of data

Model LogL AIC* BIC HQ

(6,5)(0,0) -4624.583957  5.600947  5.643434  5.616696
(6,4)(0,0) -4626.078375  5.601544  5.640762  5.616082
(4,7)(0,0) -4625.140904  5.601619  5.644106  5.617369
(8,8)(0,0) -4620.308072  5.601821  5.660649  5.623628
(7,7)(0,0) -4622.344438  5.601865  5.654157  5.621249
(2,6)(0,0) -4628.795247  5.602410  5.635092  5.614525
(5,8)(0,0) -4623.982693  5.602636  5.651659  5.620809
(7,6)(0,0) -4624.186315  5.602882  5.651905  5.621055
(8,5)(0,0) -4624.255452  5.602966  5.651989  5.621138
(6,6)(0,0) -4625.515283  5.603279  5.649034  5.620240
(3,6)(0,0) -4628.547532  5.603318  5.639269  5.616645
(5,4)(0,0) -4628.615356  5.603400  5.639351  5.616727
(6,7)(0,0) -4624.671032  5.603467  5.652491  5.621640
(6,3)(0,0) -4628.808010 5.603633 5.639583 5.616959
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Hannan‐Quinn	Criteria	(top	20	models)
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Schwarz	Criteria	(top	20	models)

Step 1: Model Specification (S&P Returns)
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 In this case, the best ranked model 
is a simple MA(1)!

 If you repeat the sequential selec-
tion using H-Q you obtain another 
model, a ARMA(2, 6)
o However, according to H-Q, also 

MA(1) ranks fairly high

Model LogL AIC BIC* HQ

(0,1)(0,0) -4642.855337  5.610936  5.620741  5.614571
(2,0)(0,0) -4641.234039  5.610186  5.623259  5.615032
(0,2)(0,0) -4642.412536  5.611609  5.624682  5.616455
(1,1)(0,0) -4642.542116  5.611766  5.624839  5.616612
(1,0)(0,0) -4646.647519  5.615516  5.625321  5.619151
(0,3)(0,0) -4640.410543  5.610399  5.626740  5.616457
(3,0)(0,0) -4640.591772  5.610618  5.626959  5.616676
(2,1)(0,0) -4640.961736  5.611065  5.627406  5.617122
(2,2)(0,0) -4638.704271  5.609546  5.629155  5.616815
(4,0)(0,0) -4638.869992  5.609746  5.629356  5.617015
(1,2)(0,0) -4642.659017  5.613115  5.629456  5.619172
(5,0)(0,0) -4635.677053 5.607098 5.629975 5.615578



Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.263 0.263 114.76 0.000
2 -0.006 -0.080 114.81 0.000
3 -0.049 -0.028 118.79 0.000
4 0.022 0.046 119.56 0.000
5 0.079 0.062 129.84 0.000
6 0.038 -0.001 132.24 0.000
7 0.027 0.026 133.42 0.000
8 0.041 0.037 136.15 0.000
9 0.031 0.011 137.78 0.000

10 0.011 -0.002 137.97 0.000
11 -0.005 -0.005 138.00 0.000
12 -0.019 -0.021 138.64 0.000
13 -0.062 -0.064 145.14 0.000
14 -0.078 -0.055 155.22 0.000
15 -0.068 -0.045 163.06 0.000
16 -0.004 0.016 163.08 0.000
17 0.023 0.014 163.96 0.000
18 0.032 0.031 165.66 0.000
19 -0.050 -0.055 169.89 0.000
20 -0.096 -0.056 185.22 0.000
21 -0.101 -0.060 202.47 0.000
22 -0.038 -0.001 204.89 0.000
23 0.008 0.011 205.00 0.000
24 -0.004 -0.009 205.03 0.000

Step 1: Model Specification (S&P Returns)
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 Time to take a look at
the SACF/SPACF
o The obvious insight is

that these data may have
been generated by a MA(1)

o However, SACF is also
(borderline) significant at
lags 13-15 and 19-21, accor-
ding to a sinusoidal pattern

o Such a pattern also charac-
terizes the SPACF and this
points towards a ARMA
with coefficients of alterna-
ting signs

o This may be consistent
with a ARMA(2, q) if the
AR has complex roots



3.041

3.042

3.043

3.044

3.045

3.046

3.047

3.048

(4
,7

)(
0,

0)
(3

,6
)(

0,
0)

(2
,5

)(
0,

0)
(3

,4
)(

0,
0)

(4
,0

)(
0,

0)
(1

,3
)(

0,
0)

(3
,7

)(
0,

0)
(4

,6
)(

0,
0)

(7
,3

)(
0,

0)
(1

,4
)(

0,
0)

(4
,1

)(
0,

0)
(3

,5
)(

0,
0)

(2
,1

)(
0,

0)
(2

,3
)(

0,
0)

(5
,0

)(
0,

0)
(5

,6
)(

0,
0)

(1
,1

)(
0,

0)
(1

,2
)(

0,
0)

(3
,2

)(
0,

0)
(3

,3
)(

0,
0)

Hannan‐Quinn	Criteria	(top	20	models)
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Schwarz	Criteria	(top	20	models)

Step 1: Model Specification (S&P Dividend Growth)
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o Also in this case there is considerable 
heterogeneity in the models selected 
by different ICs

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.558 0.558 516.61 0.000
2 0.437 0.183 833.89 0.000
3 0.333 0.048 1018.5 0.000
4 0.318 0.108 1186.2 0.000
5 0.273 0.037 1309.8 0.000
6 0.236 0.018 1402.1 0.000
7 0.202 0.014 1469.8 0.000
8 0.187 0.027 1528.3 0.000
9 0.145 -0.022 1563.3 0.000

10 0.103 -0.032 1581.2 0.000
11 0.097 0.017 1596.9 0.000
12 0.065 -0.028 1604.0 0.000
13 0.044 -0.019 1607.3 0.000
14 0.076 0.067 1616.9 0.000
15 0.038 -0.040 1619.3 0.000
16 0.049 0.021 1623.3 0.000
17 0.029 -0.006 1624.7 0.000
18 0.008 -0.032 1624.8 0.000
19 -0.010 -0.021 1625.0 0.000
20 -0.054 -0.068 1629.9 0.000
21 -0.026 0.038 1631.0 0.000
22 -0.047 -0.036 1634.8 0.000
23 -0.055 -0.020 1639.8 0.000
24 -0.093 -0.049 1654.3 0.000



Dependent Variable: DIV_GROWTH

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.024928 0.017566 1.419119 0.1561
DIV_GROWTH(-1) 0.805743 0.014454 55.74437 0.0000

MA(1) -0.382138 0.023630 -16.17144 0.0000
SIGMASQ 1.218382 0.020472 59.51380 0.0000

Step 2: Estimation

10

 Below models selected by BIC:

Dependent Variable: DIV_GROWTH
Method: ARMA Maximum Likelihood (BFGS)
Sample: 1881M01 2018M12
Convergence achieved after 346 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.109536 0.027732 3.949780 0.0001
AR(1) 0.438053 0.025266 17.33755 0.0000
AR(2) 0.853659 0.018479 46.19650 0.0000
AR(3) 0.550911 0.019118 28.81631 0.0000
AR(4) -0.850299 0.023986 -35.44987 0.0000
MA(1) 0.000917 0.775694 0.001182 0.9991
MA(2) -0.720756 0.766401 -0.940442 0.3471
MA(3) -0.889527 0.276931 -3.212088 0.0013
MA(4) 0.465789 0.476619 0.977278 0.3286
MA(5) 0.113664 0.112426 1.011009 0.3122
MA(6) 0.097457 0.036346 2.681398 0.0074
MA(7) -0.067542 0.073374 -0.920518 0.3574

SIGMASQ 1.185044 0.919163 1.289264 0.1975

Dependent Variable: RETURNS
Method: ARMA Maximum Likelihood (BFGS)
Sample: 1881M01 2018M12
Convergence achieved after 56 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.608992 0.119383 5.101150 0.0000
AR(1) 1.857814 0.047859 38.81860 0.0000
AR(2) -0.888484 0.048093 -18.47430 0.0000
MA(1) -1.583632 0.052399 -30.22236 0.0000
MA(2) 0.381928 0.050780 7.521271 0.0000
MA(3) 0.174042 0.037710 4.615225 0.0000
MA(4) 0.111555 0.033423 3.337674 0.0009
MA(5) 0.024096 0.035079 0.686903 0.4922
MA(6) -0.073754 0.019955 -3.696004 0.0002

SIGMASQ 15.67879 0.239330 65.51118 0.0000

Dependent Variable: RETURNS
Method: ARMA Maximum Likelihood (OPG - BHHH)
Sample: 1881M01 2018M12
Convergence achieved after 20 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.606841 0.126755 4.787531 0.0000
MA(1) 0.276194 0.018176 15.19576 0.0000

SIGMASQ 15.94887 0.212700 74.98278 0.0000
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Inverse Roots of AR/MA Polynom ial(s)

Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

1 0.000 0.000 1.E-05
2 0.000 0.000 0.0004
3 0.003 0.003 0.0120
4 0.001 0.001 0.0135
5 -0.005 -0.005 0.0502
6 -0.014 -0.014 0.3604
7 -0.003 -0.003 0.3747 0.540
8 0.020 0.020 1.0592 0.589
9 0.019 0.019 1.6794 0.642

10 -0.000 -0.000 1.6794 0.794
11 -0.006 -0.006 1.7425 0.884
12 -0.010 -0.010 1.9006 0.929
13 -0.047 -0.047 5.6306 0.583
14 -0.047 -0.046 9.3022 0.317
15 -0.048 -0.048 13.211 0.153
16 0.010 0.010 13.381 0.203
17 0.010 0.010 13.551 0.259
18 0.037 0.037 15.850 0.198
19 -0.037 -0.038 18.133 0.153
20 -0.055 -0.057 23.213 0.057
21 -0.072 -0.074 31.996 0.006
22 -0.024 -0.022 32.951 0.008
23 0.006 0.011 33.011 0.011
24 -0.007 -0.004 33.084 0.016
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Step 3: Diagnostic Checks (S&P Returns)

Ba
d 

lu
ck

?

AR Root(s) Modulus Cycle

0.928907 ± 0.160050i 0.942594 36.82480

No root lies outside the unit circle.
ARMA model is stationary.

MA Root(s) Modulus Cycle

0.870085 ± 0.168875i 0.886322 32.77505
0.690517 0.690517
-0.179409 ± 0.496281i 0.527714 3.276441
-0.488237 0.488237

No root lies outside the unit circle.
ARMA model is invertible.

 Further (JB) tests reveal that the residuals
are not normally distributed, but never 
said they should be
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Inverse Roots of AR/MA Polynomial(s)

AR Root(s) Modulus Cycle

 -0.719339 ±  0.670759i  0.983548  2.627709
  0.977675  0.977675
  0.899055  0.899055

 No root lies outside the unit circle.
 ARMA model is stationary.

MA Root(s) Modulus Cycle

 1.000000  1.000000
 -0.732088 ±  0.662046i  0.987045  2.611039
 -0.270294 ±  0.445755i  0.521302  2.969526
  0.501923 ±  0.056391i  0.505081  56.15931

 No root lies outside the unit circle.
 ARMA model is invertible.

Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

1 0.000 0.000 4.E-05
2 -0.001 -0.001 0.0023
3 0.004 0.004 0.0229
4 -0.001 -0.001 0.0240
5 0.001 0.001 0.0245
6 -0.023 -0.023 0.9285
7 0.016 0.017 1.3807
8 0.027 0.027 2.5775 0.108
9 -0.003 -0.003 2.5946 0.273

10 -0.015 -0.015 2.9578 0.398
11 -0.001 -0.001 2.9587 0.565
12 -0.005 -0.006 3.0081 0.699
13 -0.039 -0.038 5.5607 0.474
14 0.044 0.045 8.7708 0.270
15 0.003 0.002 8.7849 0.361
16 0.018 0.017 9.3492 0.406
17 0.015 0.015 9.7239 0.465
18 0.020 0.021 10.392 0.496
19 -0.009 -0.011 10.517 0.571
20 -0.053 -0.050 15.280 0.290
21 0.026 0.027 16.431 0.288
22 -0.022 -0.025 17.268 0.303
23 0.034 0.033 19.154 0.261
24 -0.064 -0.065 26.061 0.073

12

Step 3: Diagnostic Checks (Dividend Growth Rate)

 Further (JB) tests reveal that the residuals
are not normally distributed, but never 
said they should be
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Step 4: Forecasting (S&P Returns)
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MA(1)

 Even though the two
sets of forecasts look
very similar, there is
some evidence that
ARMA(2,6) performs
best

 This despite the fact
that ARMA(2,6)
implies estimating
10 parameters
instead of 3

 Now we ask: can
we gain forecast
power for stock
returns from 
dividends or the
CAPE index?



Unrestricted vs. Unrestricted VARs

14

 Let’s build bivariate VAR(p) models to forecast stock returns
 Of course, in the process, we’ll also forecast dividend growth rate 

 While VAR(2) models are plausible in the light of earlier evidences, 
VAR(5) may represent a way to surrogate complex VARMA

 Lag LogL LR AIC SC HQ

0 -7522.845 NA  9.132094  9.138656  9.134527
1 -7142.176  759.9527  8.674971  8.694657  8.682270
2 -7106.110  71.91234  8.636056   8.668867*   8.648222*
3 -7102.717  6.756488  8.636793  8.682729  8.653825
4 -7090.297  24.70484  8.626574  8.685635  8.648473
5 -7084.019   12.47320*   8.623809*  8.695994  8.650574
6 -7081.281  5.433102  8.625341  8.710650  8.656972
7 -7077.532  7.428617  8.625646  8.724080  8.662143
8 -7074.353  6.292698  8.626642  8.738201  8.668006

 * indicates lag order selected by the criterion
 LR: sequential modified LR test statistic (each test at 5% level)
 FPE: Final prediction error
 AIC: Akaike information criterion
 SC: Schwarz information criterion
 HQ: Hannan-Quinn information criterion



Vector Autoregression Estimates
Included observations: 1654 after adjustments
Standard errors in ( ) & t-statistics in [ ]

RETURNS DIV_GROWTH

RETURNS(-1)  0.288218 -0.030126
 (0.02462)  (0.00681)
[ 11.7049] [-4.42054]

RETURNS(-2) -0.089024  0.007453
 (0.02475)  (0.00685)
[-3.59733] [ 1.08810]

DIV_GROWTH(-1) -0.120068  0.467370
 (0.08789)  (0.02432)
[-1.36614] [ 19.2141]

DIV_GROWTH(-2)  0.234069  0.177632
 (0.08761)  (0.02425)
[ 2.67178] [ 7.32602]

C  0.467934  0.060318
 (0.10015)  (0.02772)
[ 4.67231] [ 2.17612]

R-squared  0.079760  0.343184
Adj. R-squared  0.077528  0.341591
Log likelihood -4631.285 -2506.573
Akaike AIC  5.606149  3.036969
Schwarz SC  5.622506  3.053326

Log likelihood -7130.563
Akaike information criterion  8.634296
Schwarz criterion  8.667011
Number of coefficients  10

A VAR(2) Model
 Possible to present OLS, equation-by-

equation estimates of a VAR(2)
     Root Modulus

 0.710027  0.710027
 0.155758 - 0.262144i  0.304926
 0.155758 + 0.262144i  0.304926
-0.265956  0.265956

 No root lies outside the unit circle.
 VAR satisfies the stability condition.
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Model Diagnostics for the VAR(2)
 There are some residual concerns on the correct specification of 

the VAR(2) model, to which the VAR(5) puts remedy
o Yet concerns more about the dividend growth series than for returns
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Model Diagnostics for the VAR(5)

 Let’s now compare the forecast performance of VAR(2) and VAR(5)
 A VAR(5) outperforms, although not massively, a VAR(2), i.e., not 

always smaller models outperform (not with 1,656 obs.) 17
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Forecasting Performance of VAR(5) vs VAR(2)

 However, by inspecting the VAR(5) estimates, we detect 13 
estimated coefficients out of 22 that fail to be statistically 
significant in tests of size 5% or less
o We record slight worsening vs. ARMA(2,6): multivariate may not pay!

 Can we estimate restricted VAR models imposing restrictions?
o The answer is yes, of course, but by using MLE 18

Forecast	Evaluation:	VAR(2)

Variable Inc. obs. RMSE MAE MAPE Theil

DIV_GROWTH 1656  1.101335  0.696515  408.6220  0.507025
RETURNS 1656  3.979327  2.788962  1403.930  0.722252

Forecast	Evaluation:	VAR(5)

Variable Inc. obs. RMSE MAE MAPE Theil

DIV_GROWTH 1656  1.090412  0.689539  600.2749  0.499479
RETURNS 1656  3.965169  2.775006  1271.105  0.713692

RMSE:  Root Mean Square Error
MAE:  Mean Absolute Error
MAPE:  Mean Absolute Percentage Error
Theil:  Theil inequality coefficient



A Restricted VAR(5)
 The model estimated is:

 The ML estimation output looks as follows

19

RETURNS = C(1)+C(2)*RETURNS(-1)+C(3)*RETURNS(-5)+C(4)*DIV_GROWTH(-2)

DIV_GROWTH = C(6)*RETURNS(-1)+C(7)*DIV_GROWTH(-1)+C(8)*DIV_GROWTH(-2)+C(9)*DIV_GROWTH(-4)

Estimation Method: Full Information Maximum Likelihood (BFGS / Marquardt
        steps)
Sample: 1881M06 2018M12
Included observations: 1651
Convergence achieved after 0 iterations
Coefficient covariance computed using outer product of gradients

Coefficient Std. Error z-Statistic Prob.  

C(1) 0.363588 0.102291 3.554451 0.0004
C(2) 0.262280 0.019393 13.52419 0.0000
C(3) 0.068010 0.020928 3.249664 0.0012
C(4) 0.145699 0.067321 2.164234 0.0304
C(6) -0.026285 0.006438 -4.083030 0.0000
C(7) 0.454493 0.014314 31.75270 0.0000
C(8) 0.139912 0.016128 8.674920 0.0000
C(9) 0.110144 0.017475 6.302753 0.0000

Log likelihood -7111.650 Schwarz criterion 8.650862
Avg. log likelihood -2.153740 Hannan-Quinn criter. 8.634369
Akaike info criterion 8.624652



A Restricted VAR(5)
 The resulting forecasts of

S&P returns are similar
but not completely iden-
tical

 As a last step, given the
glamour around its role
in valuation theory, we
try to augment the VAR
model with CAPE10

 Surprisingly, we find 
that the one for CAPE
almost represent an 
autonomous regression
equation

 CAPE seems to be in a world
apart – how is that possible?

20
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RETURNS DIV_GROWTH CAPE10

RETURNS(-1)  0.334065 -0.029625  0.012443
 (0.05457)  (0.01511)  (0.00925)
[ 6.12169] [-1.96044] [ 1.34460]

RETURNS(-2) -0.085545  0.006456 -0.009375
 (0.02476)  (0.00686)  (0.00420)
[-3.45438] [ 0.94141] [-2.23243]

DIV_GROWTH(-1) -0.101673  0.463108 -0.014618
 (0.08803)  (0.02438)  (0.01493)
[-1.15491] [ 18.9966] [-0.97914]

DIV_GROWTH(-2)  0.248219  0.173840  0.038406
 (0.08769)  (0.02428)  (0.01487)
[ 2.83079] [ 7.15928] [ 2.58278]

CAPE10(-1) -0.329965  0.003639  1.187009
 (0.32181)  (0.08912)  (0.05457)
[-1.02533] [ 0.04083] [ 21.7501]

CAPE10(-2)  0.294168  0.005574 -0.193320
 (0.32208)  (0.08919)  (0.05462)
[ 0.91333] [ 0.06249] [-3.53935]

C  1.041243 -0.094084  0.106540
 (0.26684)  (0.07389)  (0.04525)
[ 3.90212] [-1.27325] [ 2.35436]

R-squared  0.083655  0.345235  0.990175
Adj. R-squared  0.080317  0.342849  0.990139

Log likelihood -7457.888
Akaike information criterion  9.043395
Schwarz criterion  9.112095
Number of coefficients  21

Expanding the VAR models to include CAPE
 CAPE10 just depends on its own

lags and (weakly) on returns at
t-2

 Neither stock returns or dividend
growth depends on CAPE

 Yet, the R-square of CAPE
exceeds 99%

 Finally, the VAR is close to being
non-stationary: what is going on?

 Stay tuned!

21

!



Lab 3: From ARMA to VAR
(Reminder: this is optional)

Prof. Massimo Guidolin

20192– Financial Econometrics

Winter/Spring 2019



The Goal

2

 In this lab we try to model and forecast real stock returns and real
dividend growth contrasting what can be done in univariate vs. 
multi-variate (here, bivariate) models

 We extend the evidence to a famous fundamental stock market 
indicator, much debated by pundits and economists, the cyclically 
adjusted price-earnings ratio over 10 years (CAPE-10)
o Important: CAPE has nothing to do with CAPEX!

 Because the data are kindly made available to the public by Prof. 
and Nobel laureate Robert Shiller and CAPE has been proposed by 
him and co-authors, this lab is 
inspired by his work

 Even though in this lab we use
U.S. data only, there is ample
international research on the
forecasting power of CAPE for
(inflation-adjusted) stock
returns



The Data

3

 We shall use a January 1881 – December 2018 monthly sample, for 
a total of 1,656 observations
o Once more, not a big problem to obtain large samples in finances
o We are on the verge of dealing with economic history here

 Three different series analyzed/commented
o The discretely compounded (real) returns on the Standard & Poor’s 

Composite index (that became S&P 500 in 1957) deflated using the 
CPI inflation index

o The discretely compounded rate of growth of the (real) dividends paid 
by the companies in the S&P index, deflated using CPI inflation

o The CAPE index, i.e., the ratio btw. the real S&P index and the average 
of the moving average of the last 10 years of real earnings reported by 
companies in the S&P index, a long-run, average real PE ratio

o CAPE is use to forecast stock returns over timescales of 10 to 20 years, 
with higher than average CAPE values implying lower than average 
long-term annual average returns
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Akaike	Information	Criteria	(top	20	models)

Step 1: Model Specification (S&P Returns)

6

 A systematic search across ARIMA(p, d, q) with p ≤ 8, d ≤ 1, q ≤ 8 
using AIC as a selection criteria points to large ARMA(6, 5) model 
o However, the very table reveals that BIC and H-Q would lead to the 

selection of much smaller models
o Such evidence in favor of large, rich ARMA models is unusual but we 

need to remember that we are using 138 years of data

Model LogL AIC* BIC HQ

(6,5)(0,0) -4624.583957  5.600947  5.643434  5.616696
(6,4)(0,0) -4626.078375  5.601544  5.640762  5.616082
(4,7)(0,0) -4625.140904  5.601619  5.644106  5.617369
(8,8)(0,0) -4620.308072  5.601821  5.660649  5.623628
(7,7)(0,0) -4622.344438  5.601865  5.654157  5.621249
(2,6)(0,0) -4628.795247  5.602410  5.635092  5.614525
(5,8)(0,0) -4623.982693  5.602636  5.651659  5.620809
(7,6)(0,0) -4624.186315  5.602882  5.651905  5.621055
(8,5)(0,0) -4624.255452  5.602966  5.651989  5.621138
(6,6)(0,0) -4625.515283  5.603279  5.649034  5.620240
(3,6)(0,0) -4628.547532  5.603318  5.639269  5.616645
(5,4)(0,0) -4628.615356  5.603400  5.639351  5.616727
(6,7)(0,0) -4624.671032  5.603467  5.652491  5.621640
(6,3)(0,0) -4628.808010 5.603633 5.639583 5.616959
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Step 1: Model Specification (S&P Returns)

7

 In this case, the best ranked model 
is a simple MA(1)!

 If you repeat the sequential selec-
tion using H-Q you obtain another 
model, a ARMA(2, 6)
o However, according to H-Q, also 

MA(1) ranks fairly high

Model LogL AIC BIC* HQ

(0,1)(0,0) -4642.855337  5.610936  5.620741  5.614571
(2,0)(0,0) -4641.234039  5.610186  5.623259  5.615032
(0,2)(0,0) -4642.412536  5.611609  5.624682  5.616455
(1,1)(0,0) -4642.542116  5.611766  5.624839  5.616612
(1,0)(0,0) -4646.647519  5.615516  5.625321  5.619151
(0,3)(0,0) -4640.410543  5.610399  5.626740  5.616457
(3,0)(0,0) -4640.591772  5.610618  5.626959  5.616676
(2,1)(0,0) -4640.961736  5.611065  5.627406  5.617122
(2,2)(0,0) -4638.704271  5.609546  5.629155  5.616815
(4,0)(0,0) -4638.869992  5.609746  5.629356  5.617015
(1,2)(0,0) -4642.659017  5.613115  5.629456  5.619172
(5,0)(0,0) -4635.677053 5.607098 5.629975 5.615578



Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.263 0.263 114.76 0.000
2 -0.006 -0.080 114.81 0.000
3 -0.049 -0.028 118.79 0.000
4 0.022 0.046 119.56 0.000
5 0.079 0.062 129.84 0.000
6 0.038 -0.001 132.24 0.000
7 0.027 0.026 133.42 0.000
8 0.041 0.037 136.15 0.000
9 0.031 0.011 137.78 0.000

10 0.011 -0.002 137.97 0.000
11 -0.005 -0.005 138.00 0.000
12 -0.019 -0.021 138.64 0.000
13 -0.062 -0.064 145.14 0.000
14 -0.078 -0.055 155.22 0.000
15 -0.068 -0.045 163.06 0.000
16 -0.004 0.016 163.08 0.000
17 0.023 0.014 163.96 0.000
18 0.032 0.031 165.66 0.000
19 -0.050 -0.055 169.89 0.000
20 -0.096 -0.056 185.22 0.000
21 -0.101 -0.060 202.47 0.000
22 -0.038 -0.001 204.89 0.000
23 0.008 0.011 205.00 0.000
24 -0.004 -0.009 205.03 0.000

Step 1: Model Specification (S&P Returns)

8

 Time to take a look at
the SACF/SPACF
o The obvious insight is

that these data may have
been generated by a MA(1)

o However, SACF is also
(borderline) significant at
lags 13-15 and 19-21, accor-
ding to a sinusoidal pattern

o Such a pattern also charac-
terizes the SPACF and this
points towards a ARMA
with coefficients of alterna-
ting signs

o This may be consistent
with a ARMA(2, q) if the
AR has complex roots
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Hannan‐Quinn	Criteria	(top	20	models)
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Schwarz	Criteria	(top	20	models)

Step 1: Model Specification (S&P Dividend Growth)

9

o Also in this case there is considerable 
heterogeneity in the models selected 
by different ICs

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.558 0.558 516.61 0.000
2 0.437 0.183 833.89 0.000
3 0.333 0.048 1018.5 0.000
4 0.318 0.108 1186.2 0.000
5 0.273 0.037 1309.8 0.000
6 0.236 0.018 1402.1 0.000
7 0.202 0.014 1469.8 0.000
8 0.187 0.027 1528.3 0.000
9 0.145 -0.022 1563.3 0.000

10 0.103 -0.032 1581.2 0.000
11 0.097 0.017 1596.9 0.000
12 0.065 -0.028 1604.0 0.000
13 0.044 -0.019 1607.3 0.000
14 0.076 0.067 1616.9 0.000
15 0.038 -0.040 1619.3 0.000
16 0.049 0.021 1623.3 0.000
17 0.029 -0.006 1624.7 0.000
18 0.008 -0.032 1624.8 0.000
19 -0.010 -0.021 1625.0 0.000
20 -0.054 -0.068 1629.9 0.000
21 -0.026 0.038 1631.0 0.000
22 -0.047 -0.036 1634.8 0.000
23 -0.055 -0.020 1639.8 0.000
24 -0.093 -0.049 1654.3 0.000



Dependent Variable: DIV_GROWTH

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.024928 0.017566 1.419119 0.1561
DIV_GROWTH(-1) 0.805743 0.014454 55.74437 0.0000

MA(1) -0.382138 0.023630 -16.17144 0.0000
SIGMASQ 1.218382 0.020472 59.51380 0.0000

Step 2: Estimation

10

 Below models selected by BIC:

Dependent Variable: DIV_GROWTH
Method: ARMA Maximum Likelihood (BFGS)
Sample: 1881M01 2018M12
Convergence achieved after 346 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.109536 0.027732 3.949780 0.0001
AR(1) 0.438053 0.025266 17.33755 0.0000
AR(2) 0.853659 0.018479 46.19650 0.0000
AR(3) 0.550911 0.019118 28.81631 0.0000
AR(4) -0.850299 0.023986 -35.44987 0.0000
MA(1) 0.000917 0.775694 0.001182 0.9991
MA(2) -0.720756 0.766401 -0.940442 0.3471
MA(3) -0.889527 0.276931 -3.212088 0.0013
MA(4) 0.465789 0.476619 0.977278 0.3286
MA(5) 0.113664 0.112426 1.011009 0.3122
MA(6) 0.097457 0.036346 2.681398 0.0074
MA(7) -0.067542 0.073374 -0.920518 0.3574

SIGMASQ 1.185044 0.919163 1.289264 0.1975

Dependent Variable: RETURNS
Method: ARMA Maximum Likelihood (BFGS)
Sample: 1881M01 2018M12
Convergence achieved after 56 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.608992 0.119383 5.101150 0.0000
AR(1) 1.857814 0.047859 38.81860 0.0000
AR(2) -0.888484 0.048093 -18.47430 0.0000
MA(1) -1.583632 0.052399 -30.22236 0.0000
MA(2) 0.381928 0.050780 7.521271 0.0000
MA(3) 0.174042 0.037710 4.615225 0.0000
MA(4) 0.111555 0.033423 3.337674 0.0009
MA(5) 0.024096 0.035079 0.686903 0.4922
MA(6) -0.073754 0.019955 -3.696004 0.0002

SIGMASQ 15.67879 0.239330 65.51118 0.0000

Dependent Variable: RETURNS
Method: ARMA Maximum Likelihood (OPG - BHHH)
Sample: 1881M01 2018M12
Convergence achieved after 20 iterations
Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.606841 0.126755 4.787531 0.0000
MA(1) 0.276194 0.018176 15.19576 0.0000

SIGMASQ 15.94887 0.212700 74.98278 0.0000
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Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

1 0.000 0.000 1.E-05
2 0.000 0.000 0.0004
3 0.003 0.003 0.0120
4 0.001 0.001 0.0135
5 -0.005 -0.005 0.0502
6 -0.014 -0.014 0.3604
7 -0.003 -0.003 0.3747 0.540
8 0.020 0.020 1.0592 0.589
9 0.019 0.019 1.6794 0.642

10 -0.000 -0.000 1.6794 0.794
11 -0.006 -0.006 1.7425 0.884
12 -0.010 -0.010 1.9006 0.929
13 -0.047 -0.047 5.6306 0.583
14 -0.047 -0.046 9.3022 0.317
15 -0.048 -0.048 13.211 0.153
16 0.010 0.010 13.381 0.203
17 0.010 0.010 13.551 0.259
18 0.037 0.037 15.850 0.198
19 -0.037 -0.038 18.133 0.153
20 -0.055 -0.057 23.213 0.057
21 -0.072 -0.074 31.996 0.006
22 -0.024 -0.022 32.951 0.008
23 0.006 0.011 33.011 0.011
24 -0.007 -0.004 33.084 0.016

11

Step 3: Diagnostic Checks (S&P Returns)

Ba
d 

lu
ck

?

AR Root(s) Modulus Cycle

0.928907 ± 0.160050i 0.942594 36.82480

No root lies outside the unit circle.
ARMA model is stationary.

MA Root(s) Modulus Cycle

0.870085 ± 0.168875i 0.886322 32.77505
0.690517 0.690517
-0.179409 ± 0.496281i 0.527714 3.276441
-0.488237 0.488237

No root lies outside the unit circle.
ARMA model is invertible.

 Further (JB) tests reveal that the residuals
are not normally distributed, but never 
said they should be
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M A roots

Inverse Roots of AR/MA Polynomial(s)

AR Root(s) Modulus Cycle

 -0.719339 ±  0.670759i  0.983548  2.627709
  0.977675  0.977675
  0.899055  0.899055

 No root lies outside the unit circle.
 ARMA model is stationary.

MA Root(s) Modulus Cycle

 1.000000  1.000000
 -0.732088 ±  0.662046i  0.987045  2.611039
 -0.270294 ±  0.445755i  0.521302  2.969526
  0.501923 ±  0.056391i  0.505081  56.15931

 No root lies outside the unit circle.
 ARMA model is invertible.

Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

1 0.000 0.000 4.E-05
2 -0.001 -0.001 0.0023
3 0.004 0.004 0.0229
4 -0.001 -0.001 0.0240
5 0.001 0.001 0.0245
6 -0.023 -0.023 0.9285
7 0.016 0.017 1.3807
8 0.027 0.027 2.5775 0.108
9 -0.003 -0.003 2.5946 0.273

10 -0.015 -0.015 2.9578 0.398
11 -0.001 -0.001 2.9587 0.565
12 -0.005 -0.006 3.0081 0.699
13 -0.039 -0.038 5.5607 0.474
14 0.044 0.045 8.7708 0.270
15 0.003 0.002 8.7849 0.361
16 0.018 0.017 9.3492 0.406
17 0.015 0.015 9.7239 0.465
18 0.020 0.021 10.392 0.496
19 -0.009 -0.011 10.517 0.571
20 -0.053 -0.050 15.280 0.290
21 0.026 0.027 16.431 0.288
22 -0.022 -0.025 17.268 0.303
23 0.034 0.033 19.154 0.261
24 -0.064 -0.065 26.061 0.073

12

Step 3: Diagnostic Checks (Dividend Growth Rate)

 Further (JB) tests reveal that the residuals
are not normally distributed, but never 
said they should be
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Comparing	Forecasts	of	S&P	Returns

Step 4: Forecasting (S&P Returns)

13

MA(1)

 Even though the two
sets of forecasts look
very similar, there is
some evidence that
ARMA(2,6) performs
best

 This despite the fact
that ARMA(2,6)
implies estimating
10 parameters
instead of 3

 Now we ask: can
we gain forecast
power for stock
returns from 
dividends or the
CAPE index?



Unrestricted vs. Unrestricted VARs

14

 Let’s build bivariate VAR(p) models to forecast stock returns
 Of course, in the process, we’ll also forecast dividend growth rate 

 While VAR(2) models are plausible in the light of earlier evidences, 
VAR(5) may represent a way to surrogate complex VARMA

 Lag LogL LR AIC SC HQ

0 -7522.845 NA  9.132094  9.138656  9.134527
1 -7142.176  759.9527  8.674971  8.694657  8.682270
2 -7106.110  71.91234  8.636056   8.668867*   8.648222*
3 -7102.717  6.756488  8.636793  8.682729  8.653825
4 -7090.297  24.70484  8.626574  8.685635  8.648473
5 -7084.019   12.47320*   8.623809*  8.695994  8.650574
6 -7081.281  5.433102  8.625341  8.710650  8.656972
7 -7077.532  7.428617  8.625646  8.724080  8.662143
8 -7074.353  6.292698  8.626642  8.738201  8.668006

 * indicates lag order selected by the criterion
 LR: sequential modified LR test statistic (each test at 5% level)
 FPE: Final prediction error
 AIC: Akaike information criterion
 SC: Schwarz information criterion
 HQ: Hannan-Quinn information criterion



Vector Autoregression Estimates
Included observations: 1654 after adjustments
Standard errors in ( ) & t-statistics in [ ]

RETURNS DIV_GROWTH

RETURNS(-1)  0.288218 -0.030126
 (0.02462)  (0.00681)
[ 11.7049] [-4.42054]

RETURNS(-2) -0.089024  0.007453
 (0.02475)  (0.00685)
[-3.59733] [ 1.08810]

DIV_GROWTH(-1) -0.120068  0.467370
 (0.08789)  (0.02432)
[-1.36614] [ 19.2141]

DIV_GROWTH(-2)  0.234069  0.177632
 (0.08761)  (0.02425)
[ 2.67178] [ 7.32602]

C  0.467934  0.060318
 (0.10015)  (0.02772)
[ 4.67231] [ 2.17612]

R-squared  0.079760  0.343184
Adj. R-squared  0.077528  0.341591
Log likelihood -4631.285 -2506.573
Akaike AIC  5.606149  3.036969
Schwarz SC  5.622506  3.053326

Log likelihood -7130.563
Akaike information criterion  8.634296
Schwarz criterion  8.667011
Number of coefficients  10

A VAR(2) Model
 Possible to present OLS, equation-by-

equation estimates of a VAR(2)
     Root Modulus

 0.710027  0.710027
 0.155758 - 0.262144i  0.304926
 0.155758 + 0.262144i  0.304926
-0.265956  0.265956

 No root lies outside the unit circle.
 VAR satisfies the stability condition.
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Model Diagnostics for the VAR(2)
 There are some residual concerns on the correct specification of 

the VAR(2) model, to which the VAR(5) puts remedy
o Yet concerns more about the dividend growth series than for returns
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Model Diagnostics for the VAR(5)

 Let’s now compare the forecast performance of VAR(2) and VAR(5)
 A VAR(5) outperforms, although not massively, a VAR(2), i.e., not 

always smaller models outperform (not with 1,656 obs.) 17
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Forecasting Performance of VAR(5) vs VAR(2)

 However, by inspecting the VAR(5) estimates, we detect 13 
estimated coefficients out of 22 that fail to be statistically 
significant in tests of size 5% or less
o We record slight worsening vs. ARMA(2,6): multivariate may not pay!

 Can we estimate restricted VAR models imposing restrictions?
o The answer is yes, of course, but by using MLE 18

Forecast	Evaluation:	VAR(2)

Variable Inc. obs. RMSE MAE MAPE Theil

DIV_GROWTH 1656  1.101335  0.696515  408.6220  0.507025
RETURNS 1656  3.979327  2.788962  1403.930  0.722252

Forecast	Evaluation:	VAR(5)

Variable Inc. obs. RMSE MAE MAPE Theil

DIV_GROWTH 1656  1.090412  0.689539  600.2749  0.499479
RETURNS 1656  3.965169  2.775006  1271.105  0.713692

RMSE:  Root Mean Square Error
MAE:  Mean Absolute Error
MAPE:  Mean Absolute Percentage Error
Theil:  Theil inequality coefficient



A Restricted VAR(5)
 The model estimated is:

 The ML estimation output looks as follows

19

RETURNS = C(1)+C(2)*RETURNS(-1)+C(3)*RETURNS(-5)+C(4)*DIV_GROWTH(-2)

DIV_GROWTH = C(6)*RETURNS(-1)+C(7)*DIV_GROWTH(-1)+C(8)*DIV_GROWTH(-2)+C(9)*DIV_GROWTH(-4)

Estimation Method: Full Information Maximum Likelihood (BFGS / Marquardt
        steps)
Sample: 1881M06 2018M12
Included observations: 1651
Convergence achieved after 0 iterations
Coefficient covariance computed using outer product of gradients

Coefficient Std. Error z-Statistic Prob.  

C(1) 0.363588 0.102291 3.554451 0.0004
C(2) 0.262280 0.019393 13.52419 0.0000
C(3) 0.068010 0.020928 3.249664 0.0012
C(4) 0.145699 0.067321 2.164234 0.0304
C(6) -0.026285 0.006438 -4.083030 0.0000
C(7) 0.454493 0.014314 31.75270 0.0000
C(8) 0.139912 0.016128 8.674920 0.0000
C(9) 0.110144 0.017475 6.302753 0.0000

Log likelihood -7111.650 Schwarz criterion 8.650862
Avg. log likelihood -2.153740 Hannan-Quinn criter. 8.634369
Akaike info criterion 8.624652



A Restricted VAR(5)
 The resulting forecasts of

S&P returns are similar
but not completely iden-
tical

 As a last step, given the
glamour around its role
in valuation theory, we
try to augment the VAR
model with CAPE10

 Surprisingly, we find 
that the one for CAPE
almost represent an 
autonomous regression
equation

 CAPE seems to be in a world
apart – how is that possible?

20
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RETURNS DIV_GROWTH CAPE10

RETURNS(-1)  0.334065 -0.029625  0.012443
 (0.05457)  (0.01511)  (0.00925)
[ 6.12169] [-1.96044] [ 1.34460]

RETURNS(-2) -0.085545  0.006456 -0.009375
 (0.02476)  (0.00686)  (0.00420)
[-3.45438] [ 0.94141] [-2.23243]

DIV_GROWTH(-1) -0.101673  0.463108 -0.014618
 (0.08803)  (0.02438)  (0.01493)
[-1.15491] [ 18.9966] [-0.97914]

DIV_GROWTH(-2)  0.248219  0.173840  0.038406
 (0.08769)  (0.02428)  (0.01487)
[ 2.83079] [ 7.15928] [ 2.58278]

CAPE10(-1) -0.329965  0.003639  1.187009
 (0.32181)  (0.08912)  (0.05457)
[-1.02533] [ 0.04083] [ 21.7501]

CAPE10(-2)  0.294168  0.005574 -0.193320
 (0.32208)  (0.08919)  (0.05462)
[ 0.91333] [ 0.06249] [-3.53935]

C  1.041243 -0.094084  0.106540
 (0.26684)  (0.07389)  (0.04525)
[ 3.90212] [-1.27325] [ 2.35436]

R-squared  0.083655  0.345235  0.990175
Adj. R-squared  0.080317  0.342849  0.990139

Log likelihood -7457.888
Akaike information criterion  9.043395
Schwarz criterion  9.112095
Number of coefficients  21

Expanding the VAR models to include CAPE
 CAPE10 just depends on its own

lags and (weakly) on returns at
t-2

 Neither stock returns or dividend
growth depends on CAPE

 Yet, the R-square of CAPE
exceeds 99%

 Finally, the VAR is close to being
non-stationary: what is going on?

 Stay tuned!

21
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A new variable: the earnings growth rate 

2
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Earnings growth rate

 Very large spike in the 
aftermath of the financial 
crisis 

 The data are very far from 
being normal (both 
because of positive 
skewness and massive 
kurtosis)  
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Series: EARN_GROWTH
Sample 1881M01 2018M12
Observations 1656

Mean       0.217824
Median   0.245000
Maximum  101.9590
Minimum -40.42200
Std. Dev.   4.197110
Skewness   8.979636
Kurtosis   234.1309

Jarque-Bera  3708338.
Probability  0.000000




A first inspection to the data generating process

3

 A simple SACF/SPACF analysis applied 
to the earnings growth rate shows that
o the series is stationary
o but shows persistence
o SACF decays slowly towards zero 

(displaying a sinusoidal pattern) 
o Interpretation of the SPACF is less 

clear 
o From the inspection of the 

correlogram it is difficult to 
distinguish whether data come from 
an AR or an ARMA

Date: 03/11/19   Time: 18:13
Sample: 1881M01 2018M12
Included observations: 1656

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.689 0.689 787.79 0.000
2 0.546 0.136 1283.2 0.000
3 0.421 0.004 1577.9 0.000
4 0.282 -0.086 1710.3 0.000
5 0.190 -0.021 1770.0 0.000
6 0.112 -0.023 1791.0 0.000
7 -0.025 -0.170 1792.1 0.000
8 -0.078 -0.008 1802.2 0.000
9 -0.112 0.003 1822.9 0.000

10 -0.178 -0.091 1875.6 0.000
11 -0.169 0.026 1923.2 0.000
12 -0.162 0.006 1966.9 0.000
13 -0.084 0.143 1978.7 0.000
14 -0.047 -0.017 1982.4 0.000
15 -0.039 -0.057 1985.0 0.000
16 -0.049 -0.058 1989.0 0.000
17 -0.055 -0.052 1994.1 0.000
18 -0.064 -0.032 2001.0 0.000
19 -0.066 -0.032 2008.2 0.000
20 -0.069 0.003 2016.2 0.000
21 -0.071 0.009 2024.6 0.000
22 -0.078 -0.032 2034.9 0.000
23 -0.085 -0.002 2047.0 0.000
24 -0.095 -0.026 2062.3 0.000
25 -0.085 0.019 2074.5 0.000
26 -0.080 -0.034 2085.2 0.000
27 -0.079 -0.049 2095.8 0.000
28 -0.066 -0.008 2103.2 0.000
29 -0.064 -0.025 2110.1 0.000
30 -0.055 0.001 2115.3 0.000
31 -0.051 -0.017 2119.6 0.000
32 -0.041 0.009 2122.4 0.000
33 -0.035 -0.003 2124.5 0.000
34 -0.028 -0.027 2125.8 0.000
35 -0.021 -0.000 2126.6 0.000
36 -0.011 -0.002 2126.8 0.000



Select a model for the earnings growth rate

4

o According to the BIC (typically the most parsimonious of the criteria) 
we have to estimate a rather rich ARMA(4, 10) model (which is the 
same selected by HQ, as well) 

o Note that the AIC would have selected a ARMA(7, 10) model 

Automatic ARIMA Forecasting
Selected dependent variable: EARN_GROWTH
Date: 03/11/19   Time: 19:37
Sample: 1881M01 2018M12
Included observations: 1656
Forecast length: 0

Number of estimated ARMA models: 121
Number of non-converged estimations: 0
Selected ARMA model: (4,10)(0,0)
SIC value: 5.03276797658
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 Lag LogL LR FPE AIC SC HQ

0 -9316.241 NA  303.6084  11.39149  11.39809  11.39394
1 -8730.867  1168.601  149.1589  10.68077  10.70057  10.68811
2 -8703.543  54.48117  144.9660  10.65225   10.68526*  10.66450
3 -8702.222  2.630680  145.4415  10.65553  10.70174  10.67267
4 -8692.095  20.14210  144.3563  10.64804  10.70745  10.67008
5 -8687.128  9.868019  144.1857  10.64686  10.71947  10.67379
6 -8685.399  3.429990  144.5866  10.64963  10.73545  10.68146
7 -8657.795  54.70121  140.4742  10.62078  10.71980   10.65751*
8 -8656.490  2.584110  140.9377  10.62407  10.73630  10.66570
9 -8656.014  0.941395  141.5462  10.62838  10.75381  10.67490

10 -8648.834  14.17531  140.9972  10.62449  10.76312  10.67591
11 -8646.891  3.831758  141.3523  10.62701  10.77884  10.68332
12 -8645.930  1.891653  141.8786  10.63072  10.79576  10.69194
13 -8625.233  40.71004  139.0122  10.61031  10.78855  10.67642
14 -8620.210   9.868864*  138.8386  10.60906  10.80050  10.68007
15 -8615.527  9.189035   138.7229*   10.60822*  10.81287  10.68413
16 -8611.887  7.132991  138.7842  10.60866  10.82651  10.68947
17 -8609.548  4.577627  139.0666  10.61069  10.84175  10.69640
18 -8607.672  3.666756  139.4286  10.61329  10.85755  10.70389
19 -8604.135  6.905630  139.5078  10.61386  10.87131  10.70935
20 -8600.940  6.230762  139.6455  10.61484  10.88550  10.71523

A VAR model for returns and earnings growth

5

o As often happens, different criteria lead to different 
conclusions: the parsimonious SC chooses a VAR(2), while the 
AIC and HQ point towards more richly parametrized models



Model diagnostic for the VAR(2)
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Autocorrelations with Approximate 2 Std.Err. Bounds

o Similar to the case that we have analyzed before, there are 
some concerns about the model specification

o HINT: try with the more richly parametrized one and compare
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Model diagnostic for the VAR(7)
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o Indeed VAR(7) seem to do much better, even if it does not solve 
the problem

o But which one has the best predictive accuracy?



Forecasting performance 

8

o Similar forecasting 
performance of the 
two models

Variable Inc. obs. RMSE MAE MAPE

EARN_GROWTH 1656  3.004112  1.101981  417.0383
RETURNS_PRICE 1656  3.977785  2.790286  3288.828
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Variable Inc. obs. RMSE MAE MAPE

EARN_GROWTH 1656  2.936189  1.171655  2008.540
RETURNS_PRICE 1656  3.960802  2.774881  1478.742

VAR(2) Model – Forecasting performance

VAR(7) Model – Forecasting performance

VAR(2) Model – Forecasts
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