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The Goal

In this lab we try to model and forecast real stock returns and real
dividend growth contrasting what can be done in univariate vs.
multi-variate (here, bivariate) models

We extend the evidence to a famous fundamental stock market
indicator, much debated by pundits and economists, the cyclically
adjusted price-earnings ratio over 10 years (CAPE-10)

O Important: CAPE has nothing to do with CAPEX!

Because the data are kindly made available to the public by Prof.
and Nobel laureate Robert Shiller and CAPE has been proposed by
him and co-authors, this lab is
inspired by his work o

+ All Equity Markets o Japan German y o USA (1979-2013)

16%

Even though in this lab we use ..
U.S. data only, there is ample =«
international research on the

forecasting power of CAPE for _ -
(inflation-adjusted) stock w T o

r r n Figure 2: Connection between the CAPE and the returns of the 15 following years in the period 1881-2013 (US) and 1979-2013 (other marketgyThe USA,
Japan and Germany are highlighted as examples in a single period 1979-2013. All returns inflation-adjusted, in local currency, incl. dividend ipfome and
annualized. Source: E

S&P 500: Robert J. Shiller, other countries: Worldscope, Thomson Reuters and own calculations.



The Data

= We shall use a January 1881 - December 2018 monthly sample, for
a total of 1,656 observations

O Once more, not a big problem to obtain large samples in finances
O We are on the verge of dealing with economic history here

= Three different series analyzed /commented

O The discretely compounded (real) returns on the Standard & Poor’s
Composite index (that became S&P 500 in 1957) deflated using the
CPI inflation index

O The discretely compounded rate of growth of the (real) dividends paid
by the companies in the S&P index, deflated using CPI inflation

0 The CAPE indey, i.e., the ratio btw. the real S&P index and the average
of the moving average of the last 10 years of real earnings reported by
companies in the S&P index, a long-run, average real PE ratio

O CAPE is use to forecast stock returns over timescales of 10 to 20 years,
with higher than average CAPE values implying lower than average

long-term annual average returns ;



Step 0: The Data

CAPE 10 Index
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Step 0: The Data

S&P Returns

|| Histogram
.10 Normal
F\ Series: RETURNS
.08 Sample 1881M01 2018M12
Observations 1656
Mean 0.606537
06 Median 0.917500
Maximum 52.42900
Minimum -26.18800
04 Std. Dev. 4150528
Skewness 0.684217
Kurtosis 21.48644
.02 1
Jarque-Bera 23709.85
Probability 0.000000
.00 T T T T T
-20 -10 0 10 20 30 40
S&P Dividend Growth Rate S&P CAPE10
.5
Series: DIV.GROWTH | ] Histogram Series: CAPE10 || Histogram
Sample 1881M01 2018M12 Normal :06 | sample 1881M01 2018M12 a Normal
Observations 1656 Observations 1656
4
Mean 0.133626 o .05 A Mean 16.92032
Median 0.185500 Median 16.19500
.3 || Maximum 8.009000 iy 04 - Maximum 44.,19800
Minimum -8.929000 / Minimum 4784000 ]
Std. Dev. 1.360409 Std. Dev. 6.791981
Skewness  -0.493424 .03 | Skewness 1.028910
-2 1 Kurtosis 8.180941 Kurtosis 4.737810
Jarque-Bera  1919.305 02 Jarque-Bera ~ 500.5680
1 | | Probability  0.000000 Probability ~ 0.000000
.01
0 T T I I T ] I T T I
8 6 4 2 0 2 4 6 8 20  -10 0 10 20 30 40
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Step 1: Model Specification (S&P Returns)

Akaike Information Criteria (top 20 models) Model

LogL AIC* BIC HQ
5.605

(6,5)(0,0) -4624.583957 5.600947 5.643434  5.616696

c co ] (6,4)(0,0) -4626.078375 5.601544 5640762  5.616082

' (4,7)(0,0) -4625.140904 5601619 5644106 5.617369

(8,8)(0,0) -4620.308072 5.601821 5.660649  5.623628

5 603 - (7,7)(0,0) -4622.344438 5.601865 5.654157  5.621249

(2,6)(0,0) -4628.795247 5.602410 (5.635092) (5.614525

(5,8)(0,0) -4623.982693 5.602636 5.651659  5.620809

5.602 - (7,6)(0,0) -4624.186315 5.602882 5651905  5.621055

(8,5)(0,0) -4624.255452 5.602966 5.651989  5.621138

(6,6)(0,0) -4625.515283 5.603279  5.649034  5.620240

5.601 - (3,6)(0,0) -4628.547532 5.603318 5639269  5.616645

(5,4)(0,0) -4628.615356 5.603400 5639351  5.616727

(6,7)(0,0) -4624.671032 5.603467 5.652491  5.621640

2600+ v T T T T 1 (63)0,0)-4628.808010 5.603633 5639583 5.616959
9999995999999 99999949
scgoggeggeggegesgesg
ORI RS DR SRR DRSS A

= A systematic search across ARIMA(p, d, q) withp <8,d<1,g<8
using AIC as a selection criteria points to large ARMA(6, 5) model

O However, the very table reveals that BIC and H-Q would lead to the

selection of much smaller models

O Such evidence in favor of large, rich ARMA models is unusual but we
need to remember that we are using 138 years of data
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Step 1: Model Specification (S&P Returns)
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Schwarz Criteria (top 20 models)

Model LogL AIC BIC* HQ
(0,1)(0,0) -4642.855337 5.610936 5.620741 | 5.614571
(2,0)(0,0) -4641.234039 5.610186 5.623259 5.615032
(0,2)(0,0) -4642.412536 5.611609 5.624682 5.616455
(1,1)(0,0) -4642.542116 5.611766 5.624839 5.616612
(1,0)(0,0) -4646.647519 5.615516  5.625321 5.619151
(0,3)(0,0) -4640.410543 5.610399 5.626740 5.616457
(3,0)(0,0) -4640.591772 5.610618 5.626959 5.616676
(2,1)(0,0) -4640.961736 5.611065 5.627406 5.617122
(2,2)(0,0) -4638.704271 5.609546 5.629155 5.616815
(4,0)(0,0) -4638.869992 5.609746  5.629356 5.617015
(1,2)(0,0) -4642.659017 5613115 5.629456 5.619172
LA L] 1] (50)(0,0) -4635.677053 (5.607098) 5629975  5.615578
8889898989999 99999395a99
9935953599535 9S358959839898 983939 Hannan-Quinn Criteria (top 20 models)
SERSERETNERNECNRITANERT 56175
sdeddedddEgdyuEgESsSsdidid
In this case, the best ranked model **"°]
is a simple MA(1)! 56165 -
. 5.6160 -
= [fyourepeat the sequential selec-
. . . 5.6155
tion using H-Q you obtain another
5.6150 |
model, a ARMA(Z, 6)
5.6145 — 1 T T T T T T T T T T T T T T T 1

0 However, according to H-Q, also
MA(1) ranks fairly high
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Step 1: Model Specification (S&P Returns)

Time to take a look at

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

the SACF/SPACF Il- r 1 0263 0263 114.76 0.000
0 The obvious insisht is I | 2 -0.006 -0.080 114.81 0.000
5 I I 3 -0.049 -0.028 118.79 0.000

that these data may have l]; l: 4 0.022 0.046 11956 0.000

| | 5 0.079 0.062 129.84 0.000

been generated by a MA(1) ) I 6 0.038 -0.001 132.24 0.000

o However, SACF is also ) ) 7 0.027 0.026 13342 0.000
_ o ) I 8 0.041 0.037 136.15 0.000
(borderline) significantat | I 9 0031 0.011 137.78 0.000
lags 13-15 and 19-21, accor- | ! 10-0.011°-0.002137.970.000

. . . Il I 11 -0.005 -0.005 138.00 0.000
ding to a sinusoidal pattern .'1. :l 12 -0.019 -0.021 138.64 0.000

| | 13 -0.062 -0.064 145.14 0.000

O Such a pattern also charac- I 14 -0.078 -0.055 15522 0.000
terizes the SPACF and this 'll l" 15 -0.068 -0.045 163.06 0.000

. I I 16 -0.004 0.016 163.08 0.000
points towards a ARMA I I 17 0.023 0.014 163.96 0.000
with coefficients of alterna- ) 18 0.032 0.031 165.66 0.000

i . Il if 19 -0.050 -0.055 169.89 0.000
Ing signs :l :l 20 -0.096 -0.056 185.22 0.000

: : | | 21 -0.101 -0.060 202.47 0.000

O T}_”S may be COHSIS‘Fent 0 I 22 -0.038 -0.001 204.89 0.000
with a ARMA(Z, q) if the I [ 23 0.008 0.011 205.00 0.000

I I 24 -0.004 -0.009 205.03 0.000

AR has complex roots




Step 1: Model Specification (S&P Dividend Growth)
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3.048
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3.046

3.045

3.044

3.043

3.042

3.041

Schwarz Criteria (top 20 models)

(1,1)(0,0)
(2,1)(0,0) |
(1,2)(0,0)
(4,0)(0,0) |
(1,3)(0,0)
(3,1)(0,0)
(1,4)(0,0)
(4,1)(0,0)
(2,2)(0,0)
(2,3)(0,0)
(5,0)(0,0)
(3,2)(0,0)
(2,5)(0,0)
(2,0)(0,0)
(34)(0,0)
(3,3)(0,0)
(24)(0,0)
(1,5)(0,0)
4,2)(0,0)
(5,1)(0,0)

Hannan-Quinn Criteria (top 20 models)

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
[ [ 1 0.558 0.558 516.61 0.000
[ 15 2 0437 0.183 833.89 0.000
[ i 3 0.333 0.048 1018.5 0.000
[ I 4 0318 0.108 1186.2 0.000
[ 1] 5 0.273 0.037 1309.8 0.000
15 ) 6 0.236 0.018 1402.1 0.000
1= ) 7 0202 0.014 1469.8 0.000
15 1! 8 0.187 0.027 15283 0.000
I8 Il 9 0.145 -0.022 1563.3 0.000
I I 10 0.103 -0.032 1581.2 0.000
I8 ) 11 0.097 0.017 1596.9 0.000
li il 12 0.065 -0.028 1604.0 0.000
li Il 13 0.044 -0.019 1607.3 0.000
Ii li 14 0.076 0.067 1616.9 0.000
1] il 15 0.038 -0.040 1619.3 0.000
li ) 16 0.049 0.021 1623.3 0.000
1] Il 17 0.029 -0.006 1624.7 0.000
1l il 18 0.008 -0.032 1624.8 0.000
I il 19 -0.010 -0.021 1625.0 0.000
I if 20 -0.054 -0.068 1629.9 0.000
I 1] 21 -0.026 0.038 1631.0 0.000
I ] 22 -0.047 -0.036 1634.8 0.000
Il Il 23 -0.055 -0.020 1639.8 0.000
il I 24 -0.093 -0.049 1654.3 0.000

4700 J—
(36)(0,0) |
(25)(00)
(34)(00) |
(4.0)(0,0)
(1,3)(0,0)
(3700
(46)(0,0)
(7:3)(00)
(1,4)(0,0)
(4100
(3500
(21)(0,0)
(2.3)(0,0)
(5,0)(0,0)
(56)(00)
(1,1)(0,0)
(1,2)(0,0)
(32)(00)
(3.3)(0,0)

O Also in this case there is considerable
heterogeneity in the models selected
by different ICs
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Step 2: Estimation

Dependent Variable: RETURNS
Method: ARMA Maximum Likelihood (BFGS)

Sample: 1881M01 2018M12
Convergence achieved after 56 iterations

Dependent Variable: DIV_.GROWTH

Method: ARMA Maximum Likelihood (BFGS)
Sample: 1881M01 2018M12
Convergence achieved after 346 iterations

Coefficient covariance computed using outer product of gradients Coefficient covariance computed using outer product of gradients

Variable  Coefficient Std. Error t-Statistic Prob. Variable Coefficient Std. Error t-Statistic Prob.
C 0.608992  0.119383 5.101150  0.0000 C 0.109536  0.027732 3.949780  0.0001
AR(1) 1.857814  0.047859  38.81860  0.0000 AR(1) 0.438053  0.025266  17.33755  0.0000
AR(2) -0.888484  0.048093  -18.47430  0.0000 AR(2) 0.853659  0.018479  46.19650  0.0000
MA(1)  -1.583632  0.052399  -30.22236  0.0000 AR(3) 0550911  0.019118 2881631  0.0000
MA(2) 0.381928 0.050780 7521271 0.0000 AR(4) -0.850299 0.023986  -35.44987 0.0000
MA(3)  0.174042  0.037710  4.615225  0.0000 MA(1) 0000917 ~ 0775694 ~ 0.00118z2  [0.9991
MA(4) 0.111555  0.033423  3.337674  0.0009 mg; g;gg;gg 8;?2321 :g-g‘;gggg gggg
MA(5) 0.024096 0.035079 0.686903 0.4922 MA(4) 0'465789 0'476619 0'977278 0'3286
MA(6) -0.073754 0.019955  -3.696004 0.0002 MACS 0.113664 0.112426 1'011009 0'3122
SIGMASQ 15.67879 0.239330 65.51118 0.0000 MA{6% 0'097457 0.036346 2.681398 0'0074
. MA(7) -0.067542 0.073374 -0.920518 0.3574
= Below models selected by BIC:  geumasq 1185044 0919163 1289264 0.1975
Dependent Variable: RETURNS
Method: ARMA Maximum Likelihood (OPG - BHHH) Dependent Variable: DIV_GROWTH
Sample: 1881M01 2018M12
Convergence achieved after 20 iterations _ Variable Coefficient Std. Error t-Statistic  Prob.
Coefficient covariance computed using outer product of gradients
. _ L. C 0.024928 0.017566 1.419119 0.1561
Variable Coefficient Std. Error t-Statistic Prob. DIV_.GROWTH(-1) 0.805743 0.014454 55.74437 0.0000
MA(1) -0.382138 0.023630 -16.17144 0.0000
Oy Deoems o1ze7ss  azezssi 00000 goulde  iGic gozosrz sosiza0 0ooo
SIGMASQ 15.94887 0.212700 74.98278 0.0000 10




Step 3: Diagnostic Checks (S&P Returns)

0.690517 0.690517 [ 9 0.019 0019 1.6794 0.642

AR Root(s) Modulus Cycle Autocorrelation Partial Correlation AC PAC Q-Stat Prob*
0.928907 + 0.160050i 0.942594 36.82480 '|' ' 1 0.000 0.000 1.E-05
I | 2 0.000 0.000 0.0004
No root lies outside the unit circle. '|' ! 3 0.003 0.003 0.0120
ARMA model is stationary. I ! 4 0.001 0.001 0.0135
I | 5 -0.005 -0.005 0.0502
MA Root(s) Modulus Cycle { | 6 -0.014 -0.014 0.3604
I | 7 -0.003 -0.003 0.3747 0.540
0.870085 = 0.168875i 0.886322 32.77505 | : 8 0.020 0.020 1.0592 0.589
|
|
|

|
|

|

|

|

|

|

|

|

|

|

! 12 -0.010 -0.010 1.9006 0.929
|

|

|

|

|

|

-0.179409 + 0.496281i  0.527714 3.276441 'i' 10-0.000 -0.000 1.6794 0.794
-0.488237 0.488237 :': 11 -0.006 -0.006 1.7425 0.884
No root lies outside the unit circle. :: : 5’} 88:; 8812 gg’ggg 825133
ARMA model is invertible. _ I i 15 -0.048 -0.048 13211 0.153
Inverse|Roots of AR/MA Polynomial(s) I | 16 0010 0.010 13.381 0203
1.5 © AR roots | | 17 0.010 0.010 13.551 0.259
MA roots [ | 18 0.037 0.037 15850 0.198
1.0 I i 19 -0.037 -0.038 18.133 0.153
I I 20 -0.055 -0.057 23.213
0.5 | R il 21 -0.072 -0.074 31.996
. | 22 -0.024 -0.022 32.951
00 ° I I 23 0.006 0011 33.011
' o I I 24 -0.007 -0.004 33.084
-0.5 .
= Further (JB) tests reveal that the residuals
10 are not normally distributed, but never
15 said they should be 11



Step 3: Diagnostic Checks (Dividend Growth Rate)

AR Root(s) Modulus Cycle Autocorrelation Partial Correlation AC PAC  Q-Stat Prob*
-0.719339 + 0.670759i 0.983548 2.627709 i !, 1 0.000 0.000 4.E-05
8'333822 8'333822 I It 2 -0.001 -0.001 0.0023

i i ] 1! 3 0.004 0.004 0.0229
No root lies outside the unit circle. ) ! 4 -0.001 -0.001 0.0240
ARMA model is stationary. | | 5 0.001 0.001 0.0245
] 1 6 -0.023 -0.023 0.9285
MA Root(s) Modulus Cycle Iy i 7 0.016 0.017 1.3807
] ] 8 0.027 0.027 2.5775 0.108
1.000000 1.000000 1] i 9 -0.003 -0.003 2.5946 0.273
-0.732088 £ 0.662046i 0.987045 2.611039 I i 10 -0.015 -0.015 2.9578 0.398
-0.270294 + 0.445755i 0.521302 2.969526 1| 1 11 -0.001 -0.001 2.9587 0.565
0.501923 + 0.056391i 0.505081 56.15931 i i 12 -0.005 -0.006 3.0081 0.699
_ _ — i I 13 -0.039 -0.038 5.5607 0.474
Eo&zome:e‘l";st?;‘iee :}t‘i‘;l“emt circle. 1] 1] 14 0.044 0.045 87708 0.270
) ) 1 i 15 0.003 0.002 8.7849 0.361
Inverse|Roots of AR/MA Polynomial(s) " " 16 0018 0017 93492 0406
1.5 o AR roots 1 I 17 0.015 0.015 9.7239 0.465
MA roots 1 ] 18 0.020 0.021 10.392 0.496
1.0 I 1| 19 -0.009 -0.011 10.517 0.571
5 [ I 20 -0.053 -0.050 15.280 0.290
0.5 | "' 21 0.026 0.027 16.431 0.288
] "' 22 -0.022 -0.025 17.268 0.303
00 - ) Il 23 0.034 0.033 19.154 0261
Il il 24 -0.064 -0.065 26.061 0.073
-0.5 .
° = Further (]JB) tests reveal that the residuals
10 are not normally distributed, but never
15 12

said they should be



Step 4: Forecasting (S&P Returns)

= Even though the two

Comparing Forecasts of S&P Returns

sets of forecasts look — e

very similar, there is .

some evidence that _ .

ARMA(2,6) performs _ e

best . |10
= This despite the fact o

that ARMA(2,6) 51

-10

implies estimating

10 parameters
instead of 3

= Now we ask: can
we gain forecast
power for stock
returns from

dividends or the
CAPE index?

L L
1893 1911 1929 1947 1965 1983 2001

Forecast: RETURNSF_ARMA

Actual: RETURNS

Forecast sample: 1881M01 2018M12
Adjusted sample: 1881M03 2018M12
Included observations: 1654

Root Mean Squared Error 3.956392
Mean Absolute Error 2.766042
Mean Abs. Percent Error 2277741

Theil Inequality Coef. 0.708173
Bias Proportion 0.000002

Variance Proportion 0.532786
Covariance Proportion 0.467213
Theil U2 Coefficient 0.850339
Symmetric MAPE 137.6465

Forecast: RETURNSF  MA(1)
Actual: RETURNS

Forecast sample: 1881M01 2018M12
Included observations: 1656

Root Mean Squared Error 3.993859
Mean Absolute Error 2.798597
Mean Abs. Percent Error 246.5588

Theil Inequality Coef. 0.732555
Bias Proportion 0.000000

Variance Proportion 0.582041
Covariance Proportion 0.417959
Theil U2 Coefficient 0.823977
Symmetric MAPE 140.4549

13



Unrestricted vs. Unrestricted VARs

= Let’s build bivariate VAR(p) models to forecast stock returns

= Of course, in the process, we'll also forecast dividend growth rate

Lag LogL LR AIC SC HQ

0 -7522.845 NA 9.132094 9.138656 9.134527
1 -7142.176  759.9527 8.674971 8.694657 8.682270
2 -7106.110 7191234 8.636056 [8.668867* 8.648222%
3 -7102.717 6.756488 8.636793 8.682729 8.653825
4 -7090.297 24.70484 8.626574 8.685635 8.648473
5 -7084.019 [12.47320* 8.623809"1 8.695994  8.650574
6 -7081.281 5.433102 8.625341 8.710650 8.656972
7 -7077.532 7.428617 8.625646 8.724080 8.662143
8 -7074.353  6.292698 8.626642 8.738201 8.668006

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

= While VAR(2) models are plausible in the light of earlier evidences,
VAR(5) may represent a way to surrogate complex VARMA 14



A VAR(2) Model

= Possible to present OLS, equation-by-

equation estimates of a VAR(2)

Vector Autoregression Estimates
Included observations: 1654 after adjustments
Standard errors in ( ) & t-statistics in [ ]

Root Modulus
0.710027 0.710027
0.155758 - 0.262144i 0.304926
0.155758 + 0.262144i 0.304926
-0.265956 0.265956

No root lies outside the unit circle.
VAR satisfies the stability condition.

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

Inverse Roots of VAR Polynomials

O© AR roots

RETURNS DIV_GROWTH
RETURNS(-1) 0.288218 -0.030126
(0.02462) (0.00681)
[ 11.7049] [-4.42054]
RETURNS(-2) -0.089024 0.007453
(0.02475) (0.00685)
[-3.59733] [ 1.08810]
DIV_GROWTH(-1) -0.120068 0.467370
(0.08789) (0.02432)
[-1.36614] [ 19.2141]
DIV_GROWTH(-2) 0.234069 0.177632
(0.08761) (0.02425)
[ 2.67178] [ 7.32602]
C 0.467934 0.060318
(0.10015) (0.02772)
[4.67231] [2.17612]
R-squared 0.079760 0.343184
Adj. R-squared 0.077528 0.341591
Log likelihood -4631.285 -2506.573
Akaike AIC 5.606149 3.036969
Schwarz SC 5.622506 3.053326
Log likelihood -7130.563
Akaike information criterion 8.634296
Schwarz criterion 8.667011

Number of coefficients 10




Model Diagnostics for the VAR(2)

= There are some residual concerns on the correct specification of
the VAR(2) model, to which the VAR(5) puts remedy

0 Yet concerns more about the dividend growth series than for returns

Autocorrelations with Approximate 2 Std.Err. Bounds

Cor(RETURNS,RETURNS(-i)) Cor(RETURNS,DIV_GROWTH(-1))
.10 .10

05— ? ---------------------------------------------- () S S L S S,
ol Nl S ‘ <.

wd L 0 o O Bt B

-.10 -.10
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

Cor(DIV_.GROWTH,RETURNS(-i)) Cor(DIV_.GROWTH,DIV_GROWTH (-i))
.10 .10

N N R K v O Q. Q.
" ,Hlllllﬁmqh , 11 ] |1,

'*ll R I
N T P05 e

-10 10 16




Model Diagnostics for the VAR(5)

Autocorrelations with Approximate 2 Std.Err. Bounds

Cor(RETURNS,RETURNS(-i)) Cor(RETURNS,RETURNS(-1))
10 10
0 0
_Oouooej]I]OAJ 11] _00°q°n1ilillglllil
ol LT 118 L Lt N
_10 -10
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Cor(RETURNS,RETURNS(-i)) Cor(RETURNS,RETURNS(-i))
10 10
05 I ------------------- 0] — 1 ----------------
.oo,duellll]li ]13]1 '00°668J?°lijllll]i?
1 S
-10 -10

2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
= Let’'s now compare the forecast performance of VAR(2) and VAR(5)

= A VAR(5) outperforms, although not massively, a VAR(2), i.e., not
always smaller models outperform (not with 1,656 obs.) 17



Forecasting Performance of VAR(5) vs VAR(2)

Forecast Evaluation: VAR(2)

Forecast: RETURNSF_ARMA

Variable Inc. obs. RMSE MAE MAPE Theil Actual: RETURNS
Forecast sample: 1881M01 2018M12
DIV_GROWTH 1656 1.101335  0.696515  408.6220  0.507025 fdillwfg S;IHPIE:;BBnggfﬂlBMlZ
ncluded observations:
RETURNS 1656 3.979327 2.788962 1403.930 0.722252 Root Mean Squared Error  3.956392
Mean Absolute Error 2.766042
Forecast Evaluation: VAR(S) Mean Abs. Percent Error 227.7741
Theil Inequality Coef. 0.708173
Bias Proportion 0.000002
Variable Inc. obs. RMSE MAE MAPE Theil Variance Proportion 0.532786
Covariance Proportion 0467213
DIV_GROWTH 1656 1.090412 0.689539 600.2749 0.499479 Theil U2 Coefficient 0.850339
RETURNS 1656  ((3.965169  2.775006 1271.105  0.713692 ] | Symmetric MAPE 137.6465

RMSE: Root Mean Square Error

MAE: Mean Absolute Error

MAPE: Mean Absolute Percentage Error
Theil: Theil inequality coefficient

= However, by inspecting the VAR(5) estimates, we detect 13
estimated coefficients out of 22 that fail to be statistically
significant in tests of size 5% or less

0 Werecord slight worsening vs. ARMA(2,6): multivariate may not pay!

= (Can we estimate restricted VAR models imposing restrictions?
0 The answer is yes, of course, but by using MLE

18



A Restricted VAR(5)

= The model estimated is:
RETURNS = C(1)+C(2)*RETURNS(-1)+C(3)*RETURNS(-5)+C(4)*DIV_GROWTH(-2)

DIV_GROWTH = C(6)*RETURNS(-1)+C(7)*DIV_GROWTH(-1)+C(8)*DIV_GROWTH(-2)+C(9)*DIV_GROWTH(-4)

= The ML estimation output looks as follows

Estimation Method: Full Information Maximum Likelihood (BFGS / Marquardt
steps)

Sample: 1881M06 2018M12

Included observations: 1651

Convergence achieved after O iterations

Coefficient covariance computed using outer product of gradients

Coefficient Std. Error z-Statistic Prob.
C(1) 0.363588 0.102291 3.554451 0.0004
C(2) 0.262280 0.019393 13.52419 0.0000
C(3) 0.068010 0.020928 3.249664 0.0012
C(4) 0.145699 0.067321 2.164234 0.0304
C(6) -0.026285 0.006438 -4.083030 0.0000
C(7) 0.454493 0.014314 31.75270 0.0000
C(8) 0.139912 0.016128 8.674920 0.0000
C(9) 0.110144 0.017475 6.302753 0.0000
Log likelihood -7111.650 Schwarz criterion 8.650862
Avg. log likelihood -2.153740 Hannan-Quinn criter. 8.634369 19

Akaike info criterion 8.624652



A Restricted VAR(5)

* The resulting forecasts of
S&P returns are similar
but not completely iden-
tical

VAR(5) Forecasts

= As alast step, given the
glamour around its role
in valuation theory, we
try to augment the VAR 10
model with CAPE10

= Surprisingly, we find
that the one for CAPE
almost represent an
autonomous regression
equation 4 0 4 8 5 0 5 10

VAR(5) Forecasts

u CAPE seems to be in a WOI‘ld Restricted VAR(5) Forecasts VAR(2) Forecasts

apart — how is that possible?
20



Expanding the VAR models to include CAPE

CAPE10 just depends on its own RETURNS DIV.GROWTH _ CAPE10
RETURNS(-1) 0.334065 -0.029625 0.012443
lags and (Weale) on returns at (0.05457) (0.01511) (0.00925)
£-2 [6.12169] [-1.96044] [ 1.34460]
i L RETURNS(-2) -0.085545 0.006456 -0.009375
Neither stock returns or dividend (0.02476)  (0.00686)  (0.00420)
[-3.45438] [0.94141] [-2.23243]
growth depends on CAPE
DIV_GROWTH(-1)  -0.101673 0.463108 -0.014618
_ (0.08803) (0.02438) (0.01493)
Yet' the R square of CAPE [-1.15491] [18.9966] [-0.97914]
0
exceeds 99% DIV GROWTH(-2) 0248219 0173840  0.038406
) ) i (0.08769) (0.02428) (0.01487)
Finally, the VAR is close to being (2830791  [7.15928]  [2.58278]
non-stationary: what is going On? capelo(-1) -0.329965 0.003639 1.187009
(0.32181) (0.08912) (0.05457)
Stay tuned! Inverse Roots of VAR Polynomials [-1.02533] [0.04083] [21.7501]
1.5 O AR roots CAPE10(-2) 0.294168 0.005574 -0.193320
: (0.32208) (0.08919) (0.05462)
10 3 [0.91333] [0.06249] [-3.53935]
C 1.041243 -0.094084 0.106540
0.5 (0.26684) (0.07389) (0.04525)
o ° o [3.90212] [-1.27325] [ 2.35436]
0.0
o R-squared 0.083655 0.345235 0.990175
05 Adj. R-squared 0.080317 0.342849 0.990139
Log likelihood -7457.888
-1.0 Akaike information criterion 9.043395
Schwarz criterion 9.112095 2 1
15 Number of coefficients 21
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The Goal

In this lab we try to model and forecast real stock returns and real
dividend growth contrasting what can be done in univariate vs.
multi-variate (here, bivariate) models

We extend the evidence to a famous fundamental stock market
indicator, much debated by pundits and economists, the cyclically
adjusted price-earnings ratio over 10 years (CAPE-10)

O Important: CAPE has nothing to do with CAPEX!

Because the data are kindly made available to the public by Prof.
and Nobel laureate Robert Shiller and CAPE has been proposed by
him and co-authors, this lab is
inspired by his work o

+ All Equity Markets o Japan German y o USA (1979-2013)

16%

Even though in this lab we use ..
U.S. data only, there is ample =«
international research on the

forecasting power of CAPE for _ -
(inflation-adjusted) stock w T o

r r n Figure 2: Connection between the CAPE and the returns of the 15 following years in the period 1881-2013 (US) and 1979-2013 (other marketgyThe USA,
Japan and Germany are highlighted as examples in a single period 1979-2013. All returns inflation-adjusted, in local currency, incl. dividend ipfome and
annualized. Source: E

S&P 500: Robert J. Shiller, other countries: Worldscope, Thomson Reuters and own calculations.



The Data

= We shall use a January 1881 - December 2018 monthly sample, for
a total of 1,656 observations

O Once more, not a big problem to obtain large samples in finances
O We are on the verge of dealing with economic history here

= Three different series analyzed /commented

O The discretely compounded (real) returns on the Standard & Poor’s
Composite index (that became S&P 500 in 1957) deflated using the
CPI inflation index

O The discretely compounded rate of growth of the (real) dividends paid
by the companies in the S&P index, deflated using CPI inflation

0 The CAPE indey, i.e., the ratio btw. the real S&P index and the average
of the moving average of the last 10 years of real earnings reported by
companies in the S&P index, a long-run, average real PE ratio

O CAPE is use to forecast stock returns over timescales of 10 to 20 years,
with higher than average CAPE values implying lower than average

long-term annual average returns ;



Step 0: The Data

CAPE 10 Index

40

35 _| | Historical mean: 16.9 |
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Step 0: The Data

S&P Returns

|| Histogram
.10 Normal
F\ Series: RETURNS
.08 Sample 1881M01 2018M12
Observations 1656
Mean 0.606537
06 Median 0.917500
Maximum 52.42900
Minimum -26.18800
04 Std. Dev. 4150528
Skewness 0.684217
Kurtosis 21.48644
.02 1
Jarque-Bera 23709.85
Probability 0.000000
.00 T T T T T
-20 -10 0 10 20 30 40
S&P Dividend Growth Rate S&P CAPE10
.5
Series: DIV.GROWTH | ] Histogram Series: CAPE10 || Histogram
Sample 1881M01 2018M12 Normal :06 | sample 1881M01 2018M12 a Normal
Observations 1656 Observations 1656
4
Mean 0.133626 o .05 A Mean 16.92032
Median 0.185500 Median 16.19500
.3 || Maximum 8.009000 iy 04 - Maximum 44.,19800
Minimum -8.929000 / Minimum 4784000 ]
Std. Dev. 1.360409 Std. Dev. 6.791981
Skewness  -0.493424 .03 | Skewness 1.028910
-2 1 Kurtosis 8.180941 Kurtosis 4.737810
Jarque-Bera  1919.305 02 Jarque-Bera ~ 500.5680
1 | | Probability  0.000000 Probability ~ 0.000000
.01
0 T T I I T ] I T T I
8 6 4 2 0 2 4 6 8 20  -10 0 10 20 30 40

505



Step 1: Model Specification (S&P Returns)

Akaike Information Criteria (top 20 models) Model

LogL AIC* BIC HQ
5.605

(6,5)(0,0) -4624.583957 5.600947 5.643434  5.616696

c co ] (6,4)(0,0) -4626.078375 5.601544 5640762  5.616082

' (4,7)(0,0) -4625.140904 5601619 5644106 5.617369

(8,8)(0,0) -4620.308072 5.601821 5.660649  5.623628

5 603 - (7,7)(0,0) -4622.344438 5.601865 5.654157  5.621249

(2,6)(0,0) -4628.795247 5.602410 (5.635092) (5.614525

(5,8)(0,0) -4623.982693 5.602636 5.651659  5.620809

5.602 - (7,6)(0,0) -4624.186315 5.602882 5651905  5.621055

(8,5)(0,0) -4624.255452 5.602966 5.651989  5.621138

(6,6)(0,0) -4625.515283 5.603279  5.649034  5.620240

5.601 - (3,6)(0,0) -4628.547532 5.603318 5639269  5.616645

(5,4)(0,0) -4628.615356 5.603400 5639351  5.616727

(6,7)(0,0) -4624.671032 5.603467 5.652491  5.621640

2600+ v T T T T 1 (63)0,0)-4628.808010 5.603633 5639583 5.616959
9999995999999 99999949
scgoggeggeggegesgesg
ORI RS DR SRR DRSS A

= A systematic search across ARIMA(p, d, q) withp <8,d<1,g<8
using AIC as a selection criteria points to large ARMA(6, 5) model

O However, the very table reveals that BIC and H-Q would lead to the

selection of much smaller models

O Such evidence in favor of large, rich ARMA models is unusual but we
need to remember that we are using 138 years of data

6



Step 1: Model Specification (S&P Returns)

5.634

5.632

5.630

5.628

5.626

5.624

5.622

5.620

Schwarz Criteria (top 20 models)

Model LogL AIC BIC* HQ
(0,1)(0,0) -4642.855337 5.610936 5.620741 | 5.614571
(2,0)(0,0) -4641.234039 5.610186 5.623259 5.615032
(0,2)(0,0) -4642.412536 5.611609 5.624682 5.616455
(1,1)(0,0) -4642.542116 5.611766 5.624839 5.616612
(1,0)(0,0) -4646.647519 5.615516  5.625321 5.619151
(0,3)(0,0) -4640.410543 5.610399 5.626740 5.616457
(3,0)(0,0) -4640.591772 5.610618 5.626959 5.616676
(2,1)(0,0) -4640.961736 5.611065 5.627406 5.617122
(2,2)(0,0) -4638.704271 5.609546 5.629155 5.616815
(4,0)(0,0) -4638.869992 5.609746  5.629356 5.617015
(1,2)(0,0) -4642.659017 5613115 5.629456 5.619172
LA L] 1] (50)(0,0) -4635.677053 (5.607098) 5629975  5.615578
8889898989999 99999395a99
9935953599535 9S358959839898 983939 Hannan-Quinn Criteria (top 20 models)
SERSERETNERNECNRITANERT 56175
sdeddedddEgdyuEgESsSsdidid
In this case, the best ranked model **"°]
is a simple MA(1)! 56165 -
. 5.6160 -
= [fyourepeat the sequential selec-
. . . 5.6155
tion using H-Q you obtain another
5.6150 |
model, a ARMA(Z, 6)
5.6145 — 1 T T T T T T T T T T T T T T T 1

0 However, according to H-Q, also
MA(1) ranks fairly high
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Step 1: Model Specification (S&P Returns)

Time to take a look at

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

the SACF/SPACF Il- r 1 0263 0263 114.76 0.000
0 The obvious insisht is I | 2 -0.006 -0.080 114.81 0.000
5 I I 3 -0.049 -0.028 118.79 0.000

that these data may have l]; l: 4 0.022 0.046 11956 0.000

| | 5 0.079 0.062 129.84 0.000

been generated by a MA(1) ) I 6 0.038 -0.001 132.24 0.000

o However, SACF is also ) ) 7 0.027 0.026 13342 0.000
_ o ) I 8 0.041 0.037 136.15 0.000
(borderline) significantat | I 9 0031 0.011 137.78 0.000
lags 13-15 and 19-21, accor- | ! 10-0.011°-0.002137.970.000

. . . Il I 11 -0.005 -0.005 138.00 0.000
ding to a sinusoidal pattern .'1. :l 12 -0.019 -0.021 138.64 0.000

| | 13 -0.062 -0.064 145.14 0.000

O Such a pattern also charac- I 14 -0.078 -0.055 15522 0.000
terizes the SPACF and this 'll l" 15 -0.068 -0.045 163.06 0.000

. I I 16 -0.004 0.016 163.08 0.000
points towards a ARMA I I 17 0.023 0.014 163.96 0.000
with coefficients of alterna- ) 18 0.032 0.031 165.66 0.000

i . Il if 19 -0.050 -0.055 169.89 0.000
Ing signs :l :l 20 -0.096 -0.056 185.22 0.000

: : | | 21 -0.101 -0.060 202.47 0.000

O T}_”S may be COHSIS‘Fent 0 I 22 -0.038 -0.001 204.89 0.000
with a ARMA(Z, q) if the I [ 23 0.008 0.011 205.00 0.000

I I 24 -0.004 -0.009 205.03 0.000

AR has complex roots




Step 1: Model Specification (S&P Dividend Growth)

3.066

3.064 -

3.062

3.060

3.058

3.056

3.054

3.048

3.047

3.046

3.045

3.044

3.043

3.042

3.041

Schwarz Criteria (top 20 models)

(1,1)(0,0)
(2,1)(0,0) |
(1,2)(0,0)
(4,0)(0,0) |
(1,3)(0,0)
(3,1)(0,0)
(1,4)(0,0)
(4,1)(0,0)
(2,2)(0,0)
(2,3)(0,0)
(5,0)(0,0)
(3,2)(0,0)
(2,5)(0,0)
(2,0)(0,0)
(34)(0,0)
(3,3)(0,0)
(24)(0,0)
(1,5)(0,0)
4,2)(0,0)
(5,1)(0,0)

Hannan-Quinn Criteria (top 20 models)

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
[ [ 1 0.558 0.558 516.61 0.000
[ 15 2 0437 0.183 833.89 0.000
[ i 3 0.333 0.048 1018.5 0.000
[ I 4 0318 0.108 1186.2 0.000
[ 1] 5 0.273 0.037 1309.8 0.000
15 ) 6 0.236 0.018 1402.1 0.000
1= ) 7 0202 0.014 1469.8 0.000
15 1! 8 0.187 0.027 15283 0.000
I8 Il 9 0.145 -0.022 1563.3 0.000
I I 10 0.103 -0.032 1581.2 0.000
I8 ) 11 0.097 0.017 1596.9 0.000
li il 12 0.065 -0.028 1604.0 0.000
li Il 13 0.044 -0.019 1607.3 0.000
Ii li 14 0.076 0.067 1616.9 0.000
1] il 15 0.038 -0.040 1619.3 0.000
li ) 16 0.049 0.021 1623.3 0.000
1] Il 17 0.029 -0.006 1624.7 0.000
1l il 18 0.008 -0.032 1624.8 0.000
I il 19 -0.010 -0.021 1625.0 0.000
I if 20 -0.054 -0.068 1629.9 0.000
I 1] 21 -0.026 0.038 1631.0 0.000
I ] 22 -0.047 -0.036 1634.8 0.000
Il Il 23 -0.055 -0.020 1639.8 0.000
il I 24 -0.093 -0.049 1654.3 0.000

4700 J—
(36)(0,0) |
(25)(00)
(34)(00) |
(4.0)(0,0)
(1,3)(0,0)
(3700
(46)(0,0)
(7:3)(00)
(1,4)(0,0)
(4100
(3500
(21)(0,0)
(2.3)(0,0)
(5,0)(0,0)
(56)(00)
(1,1)(0,0)
(1,2)(0,0)
(32)(00)
(3.3)(0,0)

O Also in this case there is considerable
heterogeneity in the models selected
by different ICs

9



Step 2: Estimation

Dependent Variable: RETURNS
Method: ARMA Maximum Likelihood (BFGS)

Sample: 1881M01 2018M12
Convergence achieved after 56 iterations

Dependent Variable: DIV_.GROWTH

Method: ARMA Maximum Likelihood (BFGS)
Sample: 1881M01 2018M12
Convergence achieved after 346 iterations

Coefficient covariance computed using outer product of gradients Coefficient covariance computed using outer product of gradients

Variable  Coefficient Std. Error t-Statistic Prob. Variable Coefficient Std. Error t-Statistic Prob.
C 0.608992  0.119383 5.101150  0.0000 C 0.109536  0.027732 3.949780  0.0001
AR(1) 1.857814  0.047859  38.81860  0.0000 AR(1) 0.438053  0.025266  17.33755  0.0000
AR(2) -0.888484  0.048093  -18.47430  0.0000 AR(2) 0.853659  0.018479  46.19650  0.0000
MA(1)  -1.583632  0.052399  -30.22236  0.0000 AR(3) 0550911  0.019118 2881631  0.0000
MA(2) 0.381928 0.050780 7521271 0.0000 AR(4) -0.850299 0.023986  -35.44987 0.0000
MA(3)  0.174042  0.037710  4.615225  0.0000 MA(1) 0000917 ~ 0775694 ~ 0.00118z2  [0.9991
MA(4) 0.111555  0.033423  3.337674  0.0009 mg; g;gg;gg 8;?2321 :g-g‘;gggg gggg
MA(5) 0.024096 0.035079 0.686903 0.4922 MA(4) 0'465789 0'476619 0'977278 0'3286
MA(6) -0.073754 0.019955  -3.696004 0.0002 MACS 0.113664 0.112426 1'011009 0'3122
SIGMASQ 15.67879 0.239330 65.51118 0.0000 MA{6% 0'097457 0.036346 2.681398 0'0074
. MA(7) -0.067542 0.073374 -0.920518 0.3574
= Below models selected by BIC:  geumasq 1185044 0919163 1289264 0.1975
Dependent Variable: RETURNS
Method: ARMA Maximum Likelihood (OPG - BHHH) Dependent Variable: DIV_GROWTH
Sample: 1881M01 2018M12
Convergence achieved after 20 iterations _ Variable Coefficient Std. Error t-Statistic  Prob.
Coefficient covariance computed using outer product of gradients
. _ L. C 0.024928 0.017566 1.419119 0.1561
Variable Coefficient Std. Error t-Statistic Prob. DIV_.GROWTH(-1) 0.805743 0.014454 55.74437 0.0000
MA(1) -0.382138 0.023630 -16.17144 0.0000
Oy Deoems o1ze7ss  azezssi 00000 goulde  iGic gozosrz sosiza0 0ooo
SIGMASQ 15.94887 0.212700 74.98278 0.0000 10




Step 3: Diagnostic Checks (S&P Returns)

0.690517 0.690517 [ 9 0.019 0019 1.6794 0.642

AR Root(s) Modulus Cycle Autocorrelation Partial Correlation AC PAC Q-Stat Prob*
0.928907 + 0.160050i 0.942594 36.82480 '|' ' 1 0.000 0.000 1.E-05
I | 2 0.000 0.000 0.0004
No root lies outside the unit circle. '|' ! 3 0.003 0.003 0.0120
ARMA model is stationary. I ! 4 0.001 0.001 0.0135
I | 5 -0.005 -0.005 0.0502
MA Root(s) Modulus Cycle { | 6 -0.014 -0.014 0.3604
I | 7 -0.003 -0.003 0.3747 0.540
0.870085 = 0.168875i 0.886322 32.77505 | : 8 0.020 0.020 1.0592 0.589
|
|
|

|
|

|

|

|

|

|

|

|

|

|

! 12 -0.010 -0.010 1.9006 0.929
|

|

|

|

|

|

-0.179409 + 0.496281i  0.527714 3.276441 'i' 10-0.000 -0.000 1.6794 0.794
-0.488237 0.488237 :': 11 -0.006 -0.006 1.7425 0.884
No root lies outside the unit circle. :: : 5’} 88:; 8812 gg’ggg 825133
ARMA model is invertible. _ I i 15 -0.048 -0.048 13211 0.153
Inverse|Roots of AR/MA Polynomial(s) I | 16 0010 0.010 13.381 0203
1.5 © AR roots | | 17 0.010 0.010 13.551 0.259
MA roots [ | 18 0.037 0.037 15850 0.198
1.0 I i 19 -0.037 -0.038 18.133 0.153
I I 20 -0.055 -0.057 23.213
0.5 | R il 21 -0.072 -0.074 31.996
. | 22 -0.024 -0.022 32.951
00 ° I I 23 0.006 0011 33.011
' o I I 24 -0.007 -0.004 33.084
-0.5 .
= Further (JB) tests reveal that the residuals
10 are not normally distributed, but never
15 said they should be 11



Step 3: Diagnostic Checks (Dividend Growth Rate)

AR Root(s) Modulus Cycle Autocorrelation Partial Correlation AC PAC  Q-Stat Prob*
-0.719339 + 0.670759i 0.983548 2.627709 i !, 1 0.000 0.000 4.E-05
8'333822 8'333822 I It 2 -0.001 -0.001 0.0023

i i ] 1! 3 0.004 0.004 0.0229
No root lies outside the unit circle. ) ! 4 -0.001 -0.001 0.0240
ARMA model is stationary. | | 5 0.001 0.001 0.0245
] 1 6 -0.023 -0.023 0.9285
MA Root(s) Modulus Cycle Iy i 7 0.016 0.017 1.3807
] ] 8 0.027 0.027 2.5775 0.108
1.000000 1.000000 1] i 9 -0.003 -0.003 2.5946 0.273
-0.732088 £ 0.662046i 0.987045 2.611039 I i 10 -0.015 -0.015 2.9578 0.398
-0.270294 + 0.445755i 0.521302 2.969526 1| 1 11 -0.001 -0.001 2.9587 0.565
0.501923 + 0.056391i 0.505081 56.15931 i i 12 -0.005 -0.006 3.0081 0.699
_ _ — i I 13 -0.039 -0.038 5.5607 0.474
Eo&zome:e‘l";st?;‘iee :}t‘i‘;l“emt circle. 1] 1] 14 0.044 0.045 87708 0.270
) ) 1 i 15 0.003 0.002 8.7849 0.361
Inverse|Roots of AR/MA Polynomial(s) " " 16 0018 0017 93492 0406
1.5 o AR roots 1 I 17 0.015 0.015 9.7239 0.465
MA roots 1 ] 18 0.020 0.021 10.392 0.496
1.0 I 1| 19 -0.009 -0.011 10.517 0.571
5 [ I 20 -0.053 -0.050 15.280 0.290
0.5 | "' 21 0.026 0.027 16.431 0.288
] "' 22 -0.022 -0.025 17.268 0.303
00 - ) Il 23 0.034 0.033 19.154 0261
Il il 24 -0.064 -0.065 26.061 0.073
-0.5 .
° = Further (]JB) tests reveal that the residuals
10 are not normally distributed, but never
15 12

said they should be



Step 4: Forecasting (S&P Returns)

= Even though the two

Comparing Forecasts of S&P Returns

sets of forecasts look — e

very similar, there is .

some evidence that _ .

ARMA(2,6) performs _ e

best . |10
= This despite the fact o

that ARMA(2,6) 51

-10

implies estimating

10 parameters
instead of 3

= Now we ask: can
we gain forecast
power for stock
returns from

dividends or the
CAPE index?

L L
1893 1911 1929 1947 1965 1983 2001

Forecast: RETURNSF_ARMA

Actual: RETURNS

Forecast sample: 1881M01 2018M12
Adjusted sample: 1881M03 2018M12
Included observations: 1654

Root Mean Squared Error 3.956392
Mean Absolute Error 2.766042
Mean Abs. Percent Error 2277741

Theil Inequality Coef. 0.708173
Bias Proportion 0.000002

Variance Proportion 0.532786
Covariance Proportion 0.467213
Theil U2 Coefficient 0.850339
Symmetric MAPE 137.6465

Forecast: RETURNSF  MA(1)
Actual: RETURNS

Forecast sample: 1881M01 2018M12
Included observations: 1656

Root Mean Squared Error 3.993859
Mean Absolute Error 2.798597
Mean Abs. Percent Error 246.5588

Theil Inequality Coef. 0.732555
Bias Proportion 0.000000

Variance Proportion 0.582041
Covariance Proportion 0.417959
Theil U2 Coefficient 0.823977
Symmetric MAPE 140.4549

13



Unrestricted vs. Unrestricted VARs

= Let’s build bivariate VAR(p) models to forecast stock returns

= Of course, in the process, we'll also forecast dividend growth rate

Lag LogL LR AIC SC HQ

0 -7522.845 NA 9.132094 9.138656 9.134527
1 -7142.176  759.9527 8.674971 8.694657 8.682270
2 -7106.110 7191234 8.636056 [8.668867* 8.648222%
3 -7102.717 6.756488 8.636793 8.682729 8.653825
4 -7090.297 24.70484 8.626574 8.685635 8.648473
5 -7084.019 [12.47320* 8.623809"1 8.695994  8.650574
6 -7081.281 5.433102 8.625341 8.710650 8.656972
7 -7077.532 7.428617 8.625646 8.724080 8.662143
8 -7074.353  6.292698 8.626642 8.738201 8.668006

* indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

= While VAR(2) models are plausible in the light of earlier evidences,
VAR(5) may represent a way to surrogate complex VARMA 14



A VAR(2) Model

= Possible to present OLS, equation-by-

equation estimates of a VAR(2)

Vector Autoregression Estimates
Included observations: 1654 after adjustments
Standard errors in ( ) & t-statistics in [ ]

Root Modulus
0.710027 0.710027
0.155758 - 0.262144i 0.304926
0.155758 + 0.262144i 0.304926
-0.265956 0.265956

No root lies outside the unit circle.
VAR satisfies the stability condition.

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

Inverse Roots of VAR Polynomials

O© AR roots

RETURNS DIV_GROWTH
RETURNS(-1) 0.288218 -0.030126
(0.02462) (0.00681)
[ 11.7049] [-4.42054]
RETURNS(-2) -0.089024 0.007453
(0.02475) (0.00685)
[-3.59733] [ 1.08810]
DIV_GROWTH(-1) -0.120068 0.467370
(0.08789) (0.02432)
[-1.36614] [ 19.2141]
DIV_GROWTH(-2) 0.234069 0.177632
(0.08761) (0.02425)
[ 2.67178] [ 7.32602]
C 0.467934 0.060318
(0.10015) (0.02772)
[4.67231] [2.17612]
R-squared 0.079760 0.343184
Adj. R-squared 0.077528 0.341591
Log likelihood -4631.285 -2506.573
Akaike AIC 5.606149 3.036969
Schwarz SC 5.622506 3.053326
Log likelihood -7130.563
Akaike information criterion 8.634296
Schwarz criterion 8.667011

Number of coefficients 10




Model Diagnostics for the VAR(2)

= There are some residual concerns on the correct specification of
the VAR(2) model, to which the VAR(5) puts remedy

0 Yet concerns more about the dividend growth series than for returns

Autocorrelations with Approximate 2 Std.Err. Bounds

Cor(RETURNS,RETURNS(-i)) Cor(RETURNS,DIV_GROWTH(-1))
.10 .10

05— ? ---------------------------------------------- () S S L S S,
ol Nl S ‘ <.

wd L 0 o O Bt B

-.10 -.10
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18

Cor(DIV_.GROWTH,RETURNS(-i)) Cor(DIV_.GROWTH,DIV_GROWTH (-i))
.10 .10

N N R K v O Q. Q.
" ,Hlllllﬁmqh , 11 ] |1,
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Model Diagnostics for the VAR(5)

Autocorrelations with Approximate 2 Std.Err. Bounds

Cor(RETURNS,RETURNS(-i)) Cor(RETURNS,RETURNS(-1))
10 10
0 0
_Oouooej]I]OAJ 11] _00°q°n1ilillglllil
ol LT 118 L Lt N
_10 -10
2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
Cor(RETURNS,RETURNS(-i)) Cor(RETURNS,RETURNS(-i))
10 10
05 I ------------------- 0] — 1 ----------------
.oo,duellll]li ]13]1 '00°668J?°lijllll]i?
1 S
-10 -10

2 4 6 8 10 12 14 16 18 2 4 6 8 10 12 14 16 18
= Let’'s now compare the forecast performance of VAR(2) and VAR(5)

= A VAR(5) outperforms, although not massively, a VAR(2), i.e., not
always smaller models outperform (not with 1,656 obs.) 17



Forecasting Performance of VAR(5) vs VAR(2)

Forecast Evaluation: VAR(2)

Forecast: RETURNSF_ARMA

Variable Inc. obs. RMSE MAE MAPE Theil Actual: RETURNS
Forecast sample: 1881M01 2018M12
DIV_GROWTH 1656 1.101335  0.696515  408.6220  0.507025 fdillwfg S;IHPIE:;BBnggfﬂlBMlZ
ncluded observations:
RETURNS 1656 3.979327 2.788962 1403.930 0.722252 Root Mean Squared Error  3.956392
Mean Absolute Error 2.766042
Forecast Evaluation: VAR(S) Mean Abs. Percent Error 227.7741
Theil Inequality Coef. 0.708173
Bias Proportion 0.000002
Variable Inc. obs. RMSE MAE MAPE Theil Variance Proportion 0.532786
Covariance Proportion 0467213
DIV_GROWTH 1656 1.090412 0.689539 600.2749 0.499479 Theil U2 Coefficient 0.850339
RETURNS 1656  ((3.965169  2.775006 1271.105  0.713692 ] | Symmetric MAPE 137.6465

RMSE: Root Mean Square Error

MAE: Mean Absolute Error

MAPE: Mean Absolute Percentage Error
Theil: Theil inequality coefficient

= However, by inspecting the VAR(5) estimates, we detect 13
estimated coefficients out of 22 that fail to be statistically
significant in tests of size 5% or less

0 Werecord slight worsening vs. ARMA(2,6): multivariate may not pay!

= (Can we estimate restricted VAR models imposing restrictions?
0 The answer is yes, of course, but by using MLE

18



A Restricted VAR(5)

= The model estimated is:
RETURNS = C(1)+C(2)*RETURNS(-1)+C(3)*RETURNS(-5)+C(4)*DIV_GROWTH(-2)

DIV_GROWTH = C(6)*RETURNS(-1)+C(7)*DIV_GROWTH(-1)+C(8)*DIV_GROWTH(-2)+C(9)*DIV_GROWTH(-4)

= The ML estimation output looks as follows

Estimation Method: Full Information Maximum Likelihood (BFGS / Marquardt
steps)

Sample: 1881M06 2018M12

Included observations: 1651

Convergence achieved after O iterations

Coefficient covariance computed using outer product of gradients

Coefficient Std. Error z-Statistic Prob.
C(1) 0.363588 0.102291 3.554451 0.0004
C(2) 0.262280 0.019393 13.52419 0.0000
C(3) 0.068010 0.020928 3.249664 0.0012
C(4) 0.145699 0.067321 2.164234 0.0304
C(6) -0.026285 0.006438 -4.083030 0.0000
C(7) 0.454493 0.014314 31.75270 0.0000
C(8) 0.139912 0.016128 8.674920 0.0000
C(9) 0.110144 0.017475 6.302753 0.0000
Log likelihood -7111.650 Schwarz criterion 8.650862
Avg. log likelihood -2.153740 Hannan-Quinn criter. 8.634369 19

Akaike info criterion 8.624652



A Restricted VAR(5)

* The resulting forecasts of
S&P returns are similar
but not completely iden-
tical

VAR(5) Forecasts

= As alast step, given the
glamour around its role
in valuation theory, we
try to augment the VAR 10
model with CAPE10

= Surprisingly, we find
that the one for CAPE
almost represent an
autonomous regression
equation 4 0 4 8 5 0 5 10

VAR(5) Forecasts

u CAPE seems to be in a WOI‘ld Restricted VAR(5) Forecasts VAR(2) Forecasts

apart — how is that possible?
20



Expanding the VAR models to include CAPE

CAPE10 just depends on its own RETURNS DIV.GROWTH _ CAPE10
RETURNS(-1) 0.334065 -0.029625 0.012443
lags and (Weale) on returns at (0.05457) (0.01511) (0.00925)
£-2 [6.12169] [-1.96044] [ 1.34460]
i L RETURNS(-2) -0.085545 0.006456 -0.009375
Neither stock returns or dividend (0.02476)  (0.00686)  (0.00420)
[-3.45438] [0.94141] [-2.23243]
growth depends on CAPE
DIV_GROWTH(-1)  -0.101673 0.463108 -0.014618
_ (0.08803) (0.02438) (0.01493)
Yet' the R square of CAPE [-1.15491] [18.9966] [-0.97914]
0
exceeds 99% DIV GROWTH(-2) 0248219 0173840  0.038406
) ) i (0.08769) (0.02428) (0.01487)
Finally, the VAR is close to being (2830791  [7.15928]  [2.58278]
non-stationary: what is going On? capelo(-1) -0.329965 0.003639 1.187009
(0.32181) (0.08912) (0.05457)
Stay tuned! Inverse Roots of VAR Polynomials [-1.02533] [0.04083] [21.7501]
1.5 O AR roots CAPE10(-2) 0.294168 0.005574 -0.193320
: (0.32208) (0.08919) (0.05462)
10 3 [0.91333] [0.06249] [-3.53935]
C 1.041243 -0.094084 0.106540
0.5 (0.26684) (0.07389) (0.04525)
o ° o [3.90212] [-1.27325] [ 2.35436]
0.0
o R-squared 0.083655 0.345235 0.990175
05 Adj. R-squared 0.080317 0.342849 0.990139
Log likelihood -7457.888
-1.0 Akaike information criterion 9.043395
Schwarz criterion 9.112095 2 1
15 Number of coefficients 21
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A new variable: the earnings growth rate

80

40 |

40 ¢

Earnings growth rate

1881

1886 -
1891 -
1896 -
1901
1906 -
1911 -
1916 -
1921 -
1926 -
1931
1936 -
1941 -
1946 -
1951
1956 -
1961 -
1966 -
1971
1976 -
1981 -
1986 -
1991 -
1996 -
2001
2006
2011
2016

Very large spike in the
aftermath of the financial
Crisis

The data are very far from
being normal (both
because of positive
skewness and massive
kurtosis)

600

400 +

200 +

Series: EARN_GROWTH
Sample 1881M01 2018M12

80

—
100

Observations 1656

Mean 0.217824
Median 0.245000
Maximum 101.9590
Minimum -40.42200
Std. Dev. 4.197110
Skewness 8.979636
Kurtosis 234.1309
Jarque-Bera 3708338.
Probability 0.0000000




A first inspection to the data generating process

= A simple SACF/SPACF analysis applied
to the earnings growth rate shows that

O
O

the series is stationary

but shows persistence

SACF decays slowly towards zero
(displaying a sinusoidal pattern)
Interpretation of the SPACF is less
clear

From the inspection of the
correlogram it is difficult to
distinguish whether data come from
an AR or an ARMA

Date: 03/11/19 Time: 18:13
Sample: 1881M01 2018M12
Included observations: 1656

AR(p) Decays t:;Nards ze- Cuts off after lag p.
MA(q) Cuts off after lag q. Decays towards zero.
ARMA(p, q) Decays towards zero  Decays towards zero

starting at lag 2 starting at lag E

ACF PACF

Autocorrelation  Partial Correlation AC PAC Q-Stat Prob
- M || 1 0689 0689 787.79 0.000
] | 2 0546 0.136 1283.2 0.000
- i 3 0421 0.004 1577.9 0.000
] ?I 4 0282 -0.086 17103 0.000
] [ 5 0.190 -0.021 1770.0 0.000
[ ] | 6 0.112 -0.023 1791.0 0.000
I ILE 7 -0.025 -0.170 17921 0.000
[ ] 8 -0.078 -0.008 1802.2 0.000
[ I 9 -0.112 0.003 1822.9 0.000
1 Elllj 10 -0.178 -0.091 1875.6 0.000
[ [ 11 -0.169 0.026 1923.2 0.000
1 Il 12 -0.162 0.006 1966.9 0.000
[ ] 13 -0.084 0.143 19787 0.000
I [ 14 -0.047 -0.017 19824 0.000
I 1 15 -0.039 -0.057 1985.0 0.000
I I 16 -0.049 -0.058 1989.0 0.000
i I 17 -0.055 -0.052 1994.1 0.000
I [ 18 -0.064 -0.032 2001.0 0.000
1 [ 19 -0.066 -0.032 2008.2 0.000
[ I 20 -0.069 0.003 2016.2 0.000
[ ] 21 -0.071 0.009 2024.6 0.000
[ [ 22 -0.078 -0.032 20349 0.000
[ f 23 -0.085 -0.002 2047.0 0.000
[ [ 24 -0.095 -0.026 2062.3 0.000
[ ] 25 -0.085 0.019 20745 0.000
[ [ 26 -0.080 -0.034 2085.2 0.000
[ [ 27 -0.079 -0.049 2095.8 0.000
[ I 28 -0.066 -0.008 21032 0.000
1 [ 29 -0.064 -0.025 2110.1 0.000
1 I 30 -0.055 0.001 2115.3 0.000
1 [ 31 -0.051 -0.017 2119.6 0.000
I ] 32 -0.041 0.009 2122.4 0.000
I I 33 -0.035 -0.003 21245 0.000
I [ 34 -0.028 -0.027 2125.8 0.000
i I 35 -0.021 -0.000 2126.6 0.000
(] I 36 -0.011 -0.002 2126.8 0.000
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Select a model for the earnings growth rate

Automatic ARIMA Forecasting

Selected dependent variable: EARN_GROWTH
Date: 03/11/19 Time: 19:37

Sample: 1881M01 2018M12

Included observations: 1656

Forecast length: 0

Number of estimated ARMA models: 121
Number of non-converged estimations: 0
Selected ARMA model: (4,10)(0,0)

SIC value: 5.03276797658

5.048

Schwarz Criteria (top 20 models)
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0 According to the BIC (typically the most parsimonious of the criteria)
we have to estimate a rather rich ARMA(4, 10) model (which is the
same selected by HQ, as well)

O Note that the AIC would have selected a ARMA(7, 10) model




A VAR model for returns and earnings growth

Lag LogL LR FPE AIC SC HQ

0 -9316.241 NA 303.6084 11.39149 11.39809 11.39394
1 -8730.867 1168.601 149.1589 10.68077 10.70057 10.68811

’ 2 -8703.543 5448117 1449660 10.65225 10.68526* 10.66450 ‘
3 -8702.222 2.630680 1454415 10.65553 10.70174 10.67267
4 -8692.095 20.14210 1443563 10.64804 10.70745 10.67008
5 -8687.128 9.868019 144.1857 10.64686 10.71947 10.67379
6 -8685.399 3.429990 144.5866  10.64963 10.73545 10.68146
7 -8657.795 54.70121 140.4742 10.62078 10.71980 10.65751*‘
8 -8656.490 2.584110 1409377 10.62407 10.73630 10.66570
9 -8656.014 0.941395 141.5462 10.62838 10.75381 10.67490
10 -8648.834 1417531 140.9972  10.62449 10.76312 10.67591
11 -8646.891 3.831758 1413523 10.62701 10.77884 10.68332
12 -8645.930 1.891653 141.8786 10.63072 10.79576 10.69194
13 -8625.233 40.71004 139.0122 10.61031 10.78855 10.67642
%

15 -8615.527 9.189035 138.7229* 10.60822* 10.81287 10.68413
16 -8611.887 7.132991 138.7842 10.60866 10.82651 10.68947
17 -8609.548 4577627 139.0666 10.61069 10.84175 10.69640
18 -8607.672 3.666756 139.4286 10.61329 10.85755 10.70389
19 -8604.135 6.905630 139.5078 10.61386 10.87131 10.70935
20 -8600.940 6.230762 139.6455 10.61484 10.88550 10.71523

O As often happens, different criteria lead to different

conclusions: the parsimonious SC chooses a VAR(2), while the
AIC and HQ point towards more richly parametrized models



Model diagnostic for the VAR(2)

Autocorrelations with Approximate 2 Std.Err. Bounds

Cor(EARN_GROWTH,EARN_GROWTH(-i)) Cor(EARN_GROWTH,RETURNS_PRICE(-i))
12+ 12 4
084 @ 08
04- 1 041 1 1
00 1 1 004 o 1 ] o ]
.04 J -.04 - l J J
.08 -.08
-12 4 -12 1
‘2‘ ‘4‘ ‘6‘ ‘8‘ ‘10‘ ‘12 ‘2‘ ‘4‘ ‘6‘ ‘8‘ ‘10‘ ‘12
Cor(RETURNS_PRICE,EARN_GROWTH(-i)) Cor(RETURNS_PRICE,RETURNS_PRICE(-i))
12 124
08 08
04 .04 <]i>
00 | A I . ] i | 00 i 1 i1 ] | ,
-04 l J -.04 J
-.08 -.08
-12 -12
T T T T T T T T T 1 T T T T T T T T T 1
2 4 6 8 10 12 2 4 6 8 10 12

O Similar to the case that we have analyzed before, there are
some concerns about the model specification

O HINT: try with the more richly parametrized one and compare



Model diagnostic for the VAR(7)

Autocorrelations with Approximate 2 Std.Err. Bounds

Cor(EARN_GROWTH,EARN_GROWTH(-i)) Cor(EARN_GROWTH,RETURNS_PRICE(-i))
12 12
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0 Indeed VAR(7) seem to do much better, even if it does not solve
the problem

O But which one has the best predictive accuracy?



Forecasting performance

VAR(2) Model - Forecasting performance
Variable Inc.obs. RMSE ~ MAE  MAPE O Similar forecasting

performance of the
EARN_GROWTH 1656 3.004112 1.101981 417.0383
RETURNS_PRICE 1656 3977785 2.790286 3288.828 two mOdelS

VAR(7) Model - Forecasting performance

Variable Inc. obs. RMSE MAE MAPE
EARN_GROWTH 1656 2936189 1171655 2008.540
RETURNS_PRICE 1656 3.960802 2.774881 1478.742

VAR(2) Model - Forecasts
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