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3. Vector Autoregressive Moving Average 
(VARMA) Models  

“In every action, we must look 
beyond the action at our past, 
present and future state, and at 
others whom it affects, and see 
the relations of all these 
things.” 
(Blaise Pascal, The Thoughts of 
Blaise Pascal) 

 

In Chapter 2, we have focused our attention on univariate time 
series models. However, because markets and institutions are 
highly intercorrelated, in financial applications we often need to 
jointly model a number of different time series to study the 
dynamic relationship among them. Therefore, in this chapter, we 
introduce econometric models for multivariate time series 
analysis. Loosely speaking, instead of focusing on the time series 
realization of a single variable, as we did in Chapter 2, now we 
consider a set of variables (e.g., the log-returns of N assets or the 
yields of Treasury bonds for N different maturity buckets), 

1, 2, ,, , ..., 't t N tt y y y =  y  with =1,  2,  ...,t T , where T is the number 

of observations in the series. The resulting sequence is called a N-
dimensional (discrete) vector stochastic process.  
In particular, we devote most of our attention to the vector 
autoregressive (VAR) models popularized by Sims (1980) that 
have come to be commonly used in financial applications. These 
are very flexible models where a researcher needs to know very 
little ex-ante theoretical information about the relationship among 
the variables to guide the specification of the model and all 
variables are treated as a-priori endogenous. In fact, as we shall see 
throughout this chapter, a VAR allows each variable to depend not 
only on its own lags (and/or combinations of white noise terms) 
but also on the lags of the other variables in the model.  
In the rest of the chapter, we proceed as follows. First, we 
generalize the concepts of (weak) stationarity to the case of N-
dimensional vector time series and discuss how to compute the 
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first two moments of the resulting multivariate distribution. 
Second, we introduce VAR models in their structural and reduced 
forms and their applications, including impulse response function 
analysis and variance decomposition. Third, we introduce the 
concept of Granger causality and show how to test for it. Finally, 
we briefly introduce vector moving average (VMA) and vector 
autoregressive moving average (VARMA) models. In this chapter, 
we focus as much as possible on the intuition and on the 
applications and as little as possible on the algebra and related 
technicalities. Of course, these remain important to any rigorous 
approach: an in-depth review of the statistical theory underlying 
multivariate time series analysis can be found in Lütkepohl (2005) 
and Reinsel (1993). 
 
1- Foundations of Multivariate Time Series Analysis  
1.1 Weak Stationarity of Multivariate Time Series  
In Chapter 2, we have introduced the concept of stationarity of a 
time series as a necessary condition to be able to use past 
observations of a variable to forecast its future realizations. In 
particular, we said that a time series is (strictly) stationary if its 
statistical properties do not change over time and that it is weakly 
stationary if its first two moments are time invariant. These 
definitions still apply when we generalize them to multivariate 
time series.  
 

Definition 3.1. (Weak Stationarity) Consider a N-dimensional time series 

1, 2, ,, , ..., 't t N tt y y y =  y . Formally, this is said to be weakly 
stationary if its first two unconditional moments are finite and 
constant through time, i.e., 

 tE   ≡ < ∞  μy  for all t; 

 ( )( ) 0't tE   ≡ < ∞− −  Γy μ y μ  for all t; 

 ( )( )' ht t hE
−

  ≡− −  Γy μ y μ  for all t and h. 

where the expectations are taken element-by-element over the 
joint distribution of ty . In particular, μ  is the vector of the means, 

’, and 0Γ  is the N N× covariance matrix where 
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the ith diagonal element is the variance of ,i ty  and the (i, j)th 

element is the covariance between ,i ty  and ,j ty . Finally, hΓ  is the 
cross-covariance matrix at lag h.  
 
Of course, the definition of weak stationarity provided above is 
completely analogous to the one discussed in Chapter 2 (as it is a 
corresponding definition of strict stationarity that is omitted here 
to save space), but it requires the computation of cross-covariance 
and cross-correlation matrices, that we shall discuss in Section 1.2. 

1.2 Cross-Covariance and Cross-Correlation Matrices 
While a Reader should be familiar with the computation of the 
covariance matrix at lag zero, we provide a primer on how to get 
the correlation matrix (at lag zero) from the covariance matrix 0Γ . 

Let D  be a N N×  diagonal matrix collecting (on its main 
diagonal) the standard deviations of ,i ty  for 1,...,i N= . The 

concurrent (i.e., at lag zero), correlation matrix of ty  is defined as 
-1 -1

0 0=ρ D Γ D , (3.1) 

where the (i, j)th element of 0ρ  is the correlation coefficient 

between ,i ty  and ,j ty  at time t: 

, ,
,

, ,

[ , ]
(0) i t j t

i j
i t j t

Cov y y
ρ

σ σ
= . (3.2) 

Because , ,(0) (0)i j j iρ ρ= , ,1 1i jρ− ≤ ≤ , and , 1i iρ =  for 1 i≤  and 

j N≤ , 0ρ  is a symmetric matrix with unit diagonal elements. 
We are now interested in computing the cross-covariance and 
cross-correlation matrices at lags different from 0. More 
specifically, the lag-h cross-covariance matrix of ty  is defined as: 

( )( )'h t t hE
−

 = − − Γ y μ y μ , (3.3) 

where μ  is the mean vector of ty . Therefore, the (i, j)th element of 

hΓ  is the covariance between ,i ty  and ,j t hy − . From Definition 3.1, 
for a weakly stationary time series, the cross-covariance matrix is 
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time-invariant, i.e., it only depends on the lag length h and not on 
the temporal index t.  
The lag-h cross-correlation matrix is defined as  

-1 -1
h h=ρ D Γ D , (3.4) 

where, as before, D is the diagonal matrix of standard deviations of 
the individual series ,i ty . Therefore, the (i, j)th element of hρ  is 

the correlation coefficient between ,i ty  and ,j t hy − : 

, ,
,

, ,

[ , ]
( ) i t j t

i j
i t j t

Cov y y
hρ

σ σ
= . (3.5) 

Interestingly, when 0h > , the correlation coefficient , ( )i j hρ  

measures the linear dependence of ,i ty  on ,j t hy − . Similarly, 

, ( )j i hρ  measures the linear dependence of ,j ty  on ,i t hy − . Finally, 

the diagonal element , ( )i i hρ  is simply the lag-h autocorrelation 

coefficient of ,i ty . Notably, one has to recognize that 

, ,( ) ( )j i i jh hρ ρ≠  for any i j≠ , as these coefficients measure 

different linear relationships. Therefore, hΓ  and hρ  do not need to 
be symmetric. In summary, the cross-correlation matrices of a 
weakly stationary vector time series summarize in a compact and 
easy-to-use way, the following information: 
 if , (0) 0i jρ ≠ , ,i ty  and ,j ty  are contemporaneously linearly 

correlated; 
 if , ,( ) ( ) 0i j j ih hρ ρ= =  for all 0h ≥ , then ,i ty  and ,j ty  

share no linear relationship; 
 if , ( ) 0i j hρ =  and , ( ) 0j i hρ =  for all 0h > , then ,i ty  and 

,j ty  are said to be linearly uncoupled; 

 if , ( ) 0i j hρ =  for all 0h > , but , ( ) 0j i qρ ≠  for at least some 
0q > ,  then there is a unidirectional (linear) relationship 

between ,i ty  and ,j ty  where ,i ty  does not depend on 

,j ty , but ,j ty  depends on (some) lagged values of ,i ty ; 
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 if , ( ) 0i j hρ ≠  for at least some 0h > , and , ( ) 0j i qρ ≠  for at 
least some 0q >   then there is a linear feedback relationship 

between ,i ty  and ,j ty . 
The concepts of unidirectional vs. feedback linear relationships 
among variables will be further developed in the so-called 
Granger-Sims causality tests (see Chapter 3.3) 

1.3 Sample Cross-Covariance and Cross-Correlation Matrices 
Now that we have discussed what cross-covariance and cross-
correlation matrices are, we are ready to discuss how they can be 
computed in practice from the data. In fact, as we already know 
from Chapter 2, we only observe empirical realizations of a time 
series and thus we can only compute sample cross-covariances 
and cross-correlations, which (under some conditions) will 
provide consistent but biased estimates of their true, unobserved 
counterparts (see Fuller, 1976, for a technical discussion of the 
asymptotic properties of sample cross-covariances and cross-
correlations). 
Given a sample { }t | 1,...,t T=y , the cross-covariance matrix can be 
estimated by 

( )( )h t t-h
1

1ˆ
T

t hT = +

= − −∑Γ y y y y with 0h ≥ , (3.6) 

where y  is the vector of sample means, i.e., 1 2 ', ,..., Ny y y =  y  

and −

=

= ∑1
,

1

T

i i t
t

y T y  with 1,...,i N= . The cross-correlation matrix 

can be then estimated as 
-1 -1

h h
ˆ ˆ ˆˆ =ρ D Γ D , with 0h ≥ , (3.7) 

where D̂  is the N N×  diagonal matrix of the sample standard 
deviations of each of the component series.  
 
 

Example 3.1. Consider the weekly yields of US one-month Treasury bills and ten-
year Treasury bonds, for the sample January 1990 - December 
2016, as plotted in Figure 3.1. 
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Figure 3.1 –Plot of weekly yields for one-month and ten-year U.S. 
Treasury bond 

These yields form a bivariate time series 1, 2,, 't tt y y =  y , where 

1,ty  is the one-month Treasury bill yield and 2,ty  is the ten-year 
yield. First, we compute the vector of sample means of the series 
and the contemporaneous correlation matrix, which are reported 
in Table 3.1. All the values reported in Table 3.1, with the 
exceptions of the correlation coefficient (which is by construction 
pure numbers, i.e., without a scale), are percentages (e.g., 3.04 
should be read as 3.04%). It is easy to see that the two series have 
a high contemporaneous correlation coefficient, 1,2(0) 0.87ρ =  and 
thus they are concurrently linearly correlated. However, cross-
correlations at different lags can give us additional useful 
information about the dynamic relationship between the series. 

Mean Standard 
Deviation

Skewness Kurtosis Minimum Maximum

One-month Treasury yield 3.04 2.51 0.18 1.75 -0.05 8.89
Ten-year Treasury yield 4.74 1.89 0.14 2.15 1.38 9.02

One-month Treasury yield
Ten-year Treasury yield

(b) Correlation Matrix
One-month Treasury yield Ten-year Treasury yield

1
0.87 1  

Table 3.1 – Descriptive statistics of the one-month and ten-year 
U.S. Treasury yield series 
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Table 3.2 shows the cross-correlations between the series. In 
particular, the first set of bins (in the first column) shows the 
correlations between the one-month Treasury yield and the lagged 
values of ten-year Treasury yields (for increasing lags, h). The set 
of bins in the second column shows the correlation between the 
one-month Treasury yield and the leading values of the ten-year 
Treasury yield, which are equivalent (because of the definition of 
stationarity) to the correlation between ten-year Treasury yields 
and lagged values of one-month bill yields (for increasing lags, h). 
According to the definition given above, the two series display a 
strong feedback relationship, as both , ( ) 0i j hρ ≠ and , ( ) 0j i qρ ≠  
hold. 

One-month yield,ten-year yield(-h) One-month yield,ten-year yield(+h) h  lag  lead

0 0.8681 0.8681
1 0.8672 0.8657
2 0.8663 0.8631
3 0.8653 0.8606
4 0.8641 0.8581
5 0.8627 0.8556
6 0.8610 0.8530
7 0.8590 0.8504
8 0.8567 0.8476
9 0.8537 0.8447

10 0.8505 0.8416
11 0.8474 0.8387
12 0.8442 0.8360
13 0.8411 0.8333
14 0.8377 0.8304
15 0.8342 0.8275
16 0.8307 0.8242
17 0.8272 0.8211
18 0.8232 0.8182
19 0.8191 0.8156
20 0.8150 0.8131
21 0.8109 0.8104
22 0.8072 0.8075
23 0.8035 0.8047
24 0.7999 0.8019

 

Table 3.2 – Sample cross-correlations between one-month and ten-
year Treasury yields 

 

1.4 Multivariate Portmanteau Tests 
In Chapter 2, we have introduced the Ljung and Box’s (1978) Q-
statistic to jointly test whether several (m) consecutive 
autocorrelation coefficients were equal to zero. As far as 
multivariate time series are concerned, we are interested in testing 
whether there are both no auto- and cross-correlations in a vector 
series ty . A simple, multivariate version of the Ljung-Box statistic 
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to test, the null hypothesis 0 1 mH : ... 0= = =ρ ρ  versus the 

alternative hypothesis 1 iH : 0≠ρ  for some { }1,...,i m∈  is  

( )2 1 1
0 0

1

1 ˆ ˆ ˆ ˆ( )
m

h h
h

Q m T tr
T h

− −

=

=
−∑ Γ Γ Γ Γ , (3.8) 

where T is the sample size, N is the dimension of ty , m is the 
maximum lag length that we wish to test and ( )tr A  is the trace of 
some matrix A , simply defined as the sum of the diagonal 
elements of A . Under the null hypothesis, ( )Q m  is asymptotically 

distributed as a 2χ  distribution with 2N m  degrees of freedom. 
For practical purposes, it is important to note that the 2χ  
approximation to the distribution of the test statistic may be 
misleading for small values of m. In addition, not knowing the small 
sample distribution is clearly a shortcoming, because infinite 
samples are not available. Using Monte Carlo techniques, it was 
found that in small samples the nominal size of the portmanteau 
test tends to be lower than the significance level chosen (see, e.g., 
Hosking, 1980). Moreover, the test has low power against many 
alternatives. 
To overcome this drawback, both Hosking (1980, 1981) and Li and 
McLeod (1981) have proposed adjusted versions of the 
multivariate Ljung-Box statistic that, despite being asymptotically 
equivalent to the original one, have better finite sample 
performance. The test statistic proposed by Hosking (1980) has 
the expression  

( )1 1
0 0

1

1 ˆ ˆ ˆ ˆ*( ) ( 2)
m

h h
h

Q m T T tr
T h

− −

=

= +
−∑ Γ Γ Γ Γ ,   (3.9) 

while the test statistic proposed by Li and McLeod (1981) is 
instead 

( )
2

1 1
0 0

1

1 ( 1)ˆ ˆ ˆ ˆ* *( )
2

m

h h
h

N m mQ m T tr
T h T

− −

=

+
= +

−∑ Γ Γ Γ Γ .  

Both Li and McLeod (1981) and Hosking (1981) provided 
simulation experiments to demonstrate the improvement of their 
suggested modified portmanteau test with respect to the original 
multivariate version of Ljung-Box statistic. Li (2004) has noted that 
a comparison of these two modified tests with the original one 
shows that both modifications work equally well and were better 
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than the original multivariate portmanteau test. Kheoh and 
McLeod (1992) have suggested that the variance of the Li-McLeod 
modified portmanteau test is less than (3.8).  

1.5 Multivariate White Noise Process 
Before we move on to the introduction of vector autoregressive 
models, we introduce the concept of multivariate white noise, 
which will be useful in the rest of the chapter to define a few 
classes of multivariate models. 
 

Definition 3.2.  (Multivariate White Noise) Let   be a 
1N ×  vector of random variables. This multivariate time series is 

said to be a multivariate white noise if it is a stationary vector 
with zero mean, and if the values of tz  at different times are 

uncorrelated, i.e., hΓ  is an N N×  matrix of zeros at all 0h ≠ . 
 

Definition 3.2 implies that each component of tz  simply behaves 
like a univariate white noise; additionally, the individual white 
noises are uncoupled in a linear sense. It is important to 
understand that the assumption that the values of tz  are 
uncorrelated does not necessarily imply that they are independent 
(while we know that independence implies zero correlation, see 
the Mathematical and Statistical Appendix at the end of the book). 
However, independence can be inferred by the lack of correlations 
at all leads and lags among the random variables that enter tz , 
when the random vector follows a multivariate normal 
distribution. 
 
2- Introduction to VAR Analysis  
2.1 From Structural to Reduced-Form VARs 
Vector autoregressive (VAR) models are a natural generalization 
of the univariate AR model already discussed in Chapter 2. In 
practice, a VAR is a system regression model that treats all the 
variables as endogenous and allows each of them to depend on p 
lagged values of itself and of all the other variables in the system. 
Formally, a VAR(p) model can be defined as follows. 
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Definition 3.3. (Vector Autoregressive Model) A Vector Autoregressive model 

of order p (in short VAR(p)) is a process that can be represented as  
 

− − − −
=

= + + + + + = + +∑0 1 1 2 2 0
1

...
p

t t t p t p t j t j t
j

y a A y A y A y u a A y u ,   

where ty  is a 1N ×  vector containing N endogenous variables, 0a  

is a 1N ×  vector of constants, 1 2, ,..., pA A A  are the p N N×  

matrices of autoregressive coefficients, and tu  is a 1N ×  vector of 
uncorrelated, white noise disturbances.  
In order to help the Reader familiarize with the concepts, we start 
our discussion introducing a bivariate VAR(1) model, while in 
Section 2.3 we generalize it to a VAR(p) model with N endogenous 
variables (hence, equations). Consider the following bivariate, first-
order Markovian system  

1, 1,0 1,2 2, 1,1 1, 1 1,2 2, 1 1,t t t t ty b b y y yϕ ϕ ε− −= − + + + (3.12) 

2, 2,0 2,1 1, 2,1 1, 1 2,2 2, 1 2,t t t t ty b b y y yϕ ϕ ε− −= − + + + (3.13) 

where both the variables 1,ty  and 2,ty  are assumed to be 

stationary and the structural error terms 1,tε  and 2,tε  are 

uncorrelated white-noise disturbances with standard deviation 1σ  
and 2σ , respectively. The system in (3.12) - (3.13) can also be 
rewritten in a more compact form using matrix notation: 

1,2 1, 1,0 1,1 1,2 1, 1 1,

2,1 2, 2,0 2,1 2,2 2, 1 2,

1
1

ϕ ϕ ε
ϕ ϕ ε

−

−

           
= + +           

           

t t t

t t t

b y b y
b y b y (3.14) 

or,  
−= + +0 1 1t t tBy Q Q y ε , (3.15) 

where  
1,2

2,1

1
1

 
≡  
 

b
b

B , 1,
t

2,

 
≡  
 

t

t

y
y

y , 1,0
0

2,0

 
=  
 

b
b

Q , 1,1 1,2
1

2,1 2,2

ϕ ϕ
ϕ ϕ
 

=  
 

Q , 

1, 1
t-1

2, 1

−

−

 
≡  
 

t

t

y
y

y  and 1,
t

2,

ε
ε
 

≡  
 

t

t

ε . 
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In this system, that is also known as a structural VAR (or VAR in 
primitive form), 1,ty  depends on its own lag and on one lag of 

2,ty , but also on the current value of 2,ty ; similarly, 2,ty  depends 

on its own lag and on one lag of 1,ty , but also on the current value 

of 1,ty . Therefore, a VAR in its structural form captures 

contemporaneous feedback effects: 1,2b−  measures the 

contemporaneous effect of a unit change of 2,ty  on 1,ty  and 2,1b−  

measures the contemporaneous effect of a unit change of 1,ty  on 

2,ty . 
Unfortunately, structural VARs are not very practical for applied 
purposes because standard estimation techniques require the 
regressors to be uncorrelated with the error terms, which is clearly 
not the case of the VAR in its structural form. This is due to the 
presence of contemporaneous feedback effects: obviously, each 
contemporaneous variable is correlated with its own error term. 
From (3.12) and (3.13), it is clear that from the first equation, 
when 1,2b−  is non-zero, 1,ty depends on 2,ty  from the second 

equation and therefore on 2,tε , and it will be correlated with it; 

from the second equation, when 2,1b−  is non-zero, 2,ty  depends on 

1,ty  from the first equation and therefore on 1,tε . As an additional 
drawback of the structural model, contemporaneous terms cannot 
be used in forecasting, i.e., exactly where VAR models tend to be 
largely popular. As a result, in time series analysis, it is common to 
manipulate the VAR in its structural form to make it more directly 
useful. Pre-multiplying both sides of (3.15) by 1−B  we obtain 

−= + +0 1 1t t ty a A y u , (3.16) 

where −= 1
0 0a B Q , −= 1

1 1A B Q  and 1
t t t

−=u B ε . Denoting by ,0ia  the 

element in row i of the vector 0a , by ,i ja  the element in row i and 

column j of the matrix 1A , and by ,i tu  the element in row i of the 

vector tu , we can rewrite (3.16) in the equivalent form: 

1, 1,0 1,1 1, 1 1,2 2, 1 1,t t t ty a a y a y u− −= + + +  (3.17) 
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2, 2,0 2,1 1, 1 2,2 2, 1 2,t t t ty a a y a y u− −= + + + . (3.18) 
This system is called reduced-form VAR or, alternatively, it is said 
to describe a VAR in its standard form. The model in (3.16) only 
features lagged endogenous variables (i.e., it does not contain 
contemporaneous feedback terms) and it can be estimated 
equation by equation using OLS (as we shall see in detail in Section 
2.4). Clearly, the new, reduced-form error terms, 1,tu  and 2,tu , 
are composites of the two original (also called pure or structural) 
shocks 1,tε  and 2,tε . This is easy to see if we solve 1

t t
−=u B ε  to get: 

1, 1,2 2,
1,

1,2 2,11
t t

t

b
u

b b
ε ε−

=
−

 (3.19) 

2, 2,1 1,
2,

1,2 2,11
t t

t

b
u

b b
ε ε−

=
−

. (3.20) 

Recalling that 1,tε  and 2,tε  are white noise processes, we can easily 

derive the properties of the reduced form errors 1,tu  and 2,tu . First, 
taking the expected value of (3.19) and (3.20) (and recalling that, 
based on the definition of a white noise, 1, 0tE ε  =   and 

2, 0tE ε  =  ), we obtain that 

1, 1,2 2,
1,

1,2 2,1

0
1

t t
t

b
uE E

b b
ε ε −

  = =   −  
 (3.21) 

2, 2,1 1,
2,

1,2 2,1

0
1

t t
t

b
uE E

b b
ε ε −

  = =   −  
. (3.22) 

In addition, because 1,tε  and 2,tε  are uncorrelated, i.e., 

1, 2,, 0t tCov ε ε  =  , we find that the variance of 1,tu is  

( ) ( )

( )

2
1, 1,2 2, 1, 2, 1, 2,1,2 1,2

1, 2 2

1,2 2,1 1,2 2,1

2 2 2
,1 1,2 ,2

2

1,2 2,1

,2

1 1

1

t t t t t t
t

bVar Var b Var b Cov
uVar

b b b b

b

b b
ε ε

ε ε ε ε ε ε

σ σ

       − + −         = = 
− −

+
=

−

  (3.23) 
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and, similarly, 

( )

2 2 2
2,1 1

2, 2

1,2 2,11
t

b
uVar

b b
ε εσ σ,2 ,+

  = 
−

. (3.24) 

It is easy to see that the variances of 1,tu  and 2,tu  are constant over 
time. Finally, the covariance between the two structural errors is 
equal to  

( )( )
( )

( )
( )

2 2
1, 1,2 2, 2, 2,1 1, 2,1 ,1 1,2 ,2

1, 2, 2 2

1,2 2,1 1,2 2,1

,
1 1

t t t t
t t

b bE b b
u uCov

b b b b
ε ε

ε ε ε ε σ σ − − − +   = = 
− −

 (3.25) 
Noticeably, while the reduced-form error terms remain serially 
uncorrelated (i.e., autocorrelations are equal to zero) as the 
structural errors were, they are cross-correlated unless 

1,2 2,1 0b b= =  (i.e., there are no contemporaneous effects of 1,ty  on 

2,ty  and vice versa). The variances and covariances of the 
reduced-form errors can be collected in the matrix uΣ : 

2
1, 1, 2, 1 1,2

2
1, 2, 2, 1,2 2

,
,

σ σ
σ σ

         = =             

t t t
u

t t t

u u uVar Cov
u u uCov Var

Σ .  

The reduced form VAR in (3.17)-(3.18) is very practical and easy to 
estimate (this can be done by simple OLS), but it is important to 
understand that, in general, it is not possible to identify the 
structural parameters and errors (i.e., the sample estimates of the 
coefficients and the residuals of the primitive system) from the OLS 
estimates of the parameters and the residuals of the standard form 
VAR. This lack of identification (because the model is linear, the 
problem is both local and global, see Chapter 8 for a differentiation 
of the two concepts) may be overcome if one is prepared to impose 
appropriate restrictions on the primitive system. This is 
unsurprising: the structural VAR in (3.12)-(3.13) contains eight 
coefficients and two variances of the error terms, for a total of ten 
parameters; the VAR in its standard form only contains nine 
parameters (six coefficients, two variances and one covariance of 
the error terms). Therefore, and this occurs for a rather intuitive 
accounting, back-of-the-envelope reason, it is not possible to 
recover all the information that was present in the primitive 
system unless we are able to restrict one of its parameters. To this 
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purpose, a popular identification scheme is the one proposed by 
Sims (1980), based on a recursive Choleski triangularization.  
Suppose that you are willing to impose a restriction on the 
primitive system in (3.12)-(3.13) such that 1,2b  is equal to zero, 

meaning that 1,ty  has a contemporaneous effect on 2,ty  , but 2,ty  

only affects 1,ty    with a one period lag: 

1, 1,0 1,1 1, 1 1,2 2, 1 1,t t t ty b y yϕ ϕ ε− −= + + +   (3.27) 

2, 2,0 2,1 1, 2,1 1, 1 2,2 2, 1 2,t t t t ty b b y y yϕ ϕ ε− −= − + + +  .(3.28) 
This corresponds to imposing a Choleski decomposition on the 
covariance matrix of the residuals of the VAR in its standard form. 
Indeed, now we can re-write the relationship between the pure 
shocks (from the structural VAR) and the regression residuals as  

1, 1,t tu ε=  (3.29) 

2, 2, 2,1 1,t t tu bε ε= − . (3.30) 

Practically, imposing the restriction 1,2 0b =   means that 1−B  is 
given by 

1

2,1

1 0
1

−  
≡  − b

B  , 

and thus, pre-multiplication of the primitive system (3.12)-(3.13) 
by the lower diagonal matrix 1−B  yields  

 
1, 1,0 1,1 1,2 1, 1 1,

2, 2,1 2,0 2,1 2,1 2,2 2, 1 2,1 2,

1 0 1 0 1 0
1 1 1

ϕ ϕ ε
ϕ ϕ ε

−

−

              
= + +              − − −               

t t t

t t t

y b y
y b b b y b

  (3.31) 
which results in 

  
1, 1,0 1,1 1,2 1, 1 1,

2, 2,0 1,0 2,1 2,1 2,1 2,1 1,1 2,2 2,1 1,2 2, 1 2, 2,1 1,

1 0
1

ϕ ϕ ε
ϕ ϕ ϕ ϕ ε ε

−

−

          
= + +          − − − − −           

t t t

t t t t

y b y
y b b b b b b y b

. (3.32) 
The system has now only nine parameters that can be identified 
using the OLS estimates from (3.17)–(3.18). Indeed, using simple 
algebra we can see that: 1,0 1,0a b= ; 2,0 2,0 1,0 2,1a b b b= − ; 

1,1 1,1a ϕ= ; 1,2 1,2a ϕ= ; 2,1 2,1 2,1 1,1a bϕ ϕ= − ; 2,2 2,2 2,1 1,2a bϕ ϕ= − . In 
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addition, since we know from (3.29)-(3.30) that 1, 1,t tu ε=  and 

2, 2, 2,1 1,t t tu bε ε= − , we can compute: 
2 2

1, ,1tuVar εσ σ1
 ≡ =  , (3.33) 

, (3.34) 
2

1, 2, 2,1 1,t tu uCov b εσ ,
  = −  . (3.35) 

The implication of the identification restriction that we just 
imposed is that, while both the 1,tε  and 2,tε  shocks affect the 

contemporaneous value of 2,ty , only 1,tε  impacts the 

contemporaneous value of 1,ty . In practice, the observed values of 

1,tu  are completely attributed to pure (structural) shocks to 1,ty . 
This technique of decomposing the residuals in a triangular fashion 
is indeed called Choleski decomposition (or triangularization). Put 
in other words, we see that the covariance matrix of the residuals 
is forced to be equal to 

' 1/2 1/2( ) '= =uΣ WΣW Σ Σ , (3.36) 
where 1−=W B , Σ  is the diagonal covariance matrix of the 
structural innovations, and 1/2Σ is the triangular “square root” of 
the covariance matrix uΣ . Equation (3.36) is easily checked: 

,(3.37) 

  
which is exactly what we found in equations (3.33)-(3.35). The 
decomposition in (3.36) is what we call the Choleski 
decomposition of the symmetric matrix uΣ . Needless to say, the 
task that one usually wants to accomplish is to go back from the 
estimated uΣ to the original (and unobserved) diagonal matrix Σ . 
With a little bit of algebra, we understand that this is equivalent to 
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1 ' 1( )− −= uΣ W Σ W . (3.38) 
This technique can be generalized to a VAR system with any 
number N of equations. In particular, in a N-variate VAR, exact 
identification requires us to impose 2( )/ 2N N−  restrictions in 
order to retrieve the N structural shocks from the residual of the 
OLS estimate. Being based on a triangular structure, a Choleski 
decomposition forces exactly 2( )/ 2N N−  values of the matrix B  
to be zero (or to some other constant).  
Let us pause for a moment to understand the meaning (and the 
implications) of the Choleski decomposition for a less simplistic 
model, for instance a VAR(1) with three endogenous variables (and 
therefore three equations). The parameters in the structural model 
consist of three intercept terms, six (two for each equation) 
coefficients that map the contemporaneous effect of each variable 
on the other two, nine autoregressive coefficients (contained in a 
3 3×  matrix) and the three variance coefficients of the error terms, 
for a total of 21 parameters. The VAR in its reduced form contains 
12 estimated coefficients (three intercepts and nine autoregressive 
coefficients), three variances and three covariances, for a total of 
18 coefficients. Therefore, we shall need to impose three 
restrictions to identify the parameters of the primitive system from 
the OLS estimates of the VAR in its standard form, which is exactly 

− =2(3 3)/2 3  restrictions. Indeed, imposing a triangular 
(Choleski) decomposition on the structural residuals is equivalent 
to pre-multiplying the structural VAR by the lower triangular 
matrix 

,                                 (3.39)  

which yields the reduced form residuals: 

 

 (3.39) 
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Because the Choleski decomposition is based on pre-multiplying by 
a (lower) triangular matrix, it follows that when we decide the 
ordering of the variables in a VAR system, we are also deciding 
which kind of restrictions the decomposition will impose on the 
contemporaneous effects of each variable on the others. For 
example, in the tri-variate case of (3.39) above,  and  
are set to zero, meaning that the first variable in the system is 
forced not to be contemporaneously affected by shocks to any of 
the other variables; the second variable in the system is only 
contemporaneously affected by shocks to the first variable; the last 
variable is contemporaneously affected by the shocks to both the 
other variables. It is easy to generalize this reasoning to the N-
variable case.  
It should be evident that there are as many Choleski 
decompositions as all the possible orderings of the variables, which 
are therefore a combinatorial factor of N. Therefore, we shall need 
to be aware that any time that we apply a Choleski triangular 
identification scheme to a VAR model that results in a specific 
ordering, we will be introducing a number of (potentially 
arbitrary) assumptions on the contemporaneous relationships 
among the variables. Therefore, despite being very practical, 
Choleski decompositions are quite deliberate in the restrictions 
that they place and tend not to be based on any theoretical 
assumptions regarding the nature of the economic relationships 
among the variables. Alternative identification schemes are 
possible (although they are more popular in the macroeconomics 
literature than in applied finance). A review of some commonly 
used restriction schemes to achieve identification based on a 
theoretical background can be found in Lütkepohl (2005, Chapter 
9). 

2.2 Stationarity Conditions and the Population Moments of a VAR(1) 
Process 
Let us now discuss the properties of a reduced-form, standard 
VAR(1) model such as the one in (3.16). Assume that ty , 0a , t-1y  

and tu  are N x 1 vectors and 1A  is a N N×  matrix and that the 
process is weakly stationary, according to Definition 3.1. By taking 
the expectation of ty  and using the fact that tE   =  0u , we obtain: 
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0 1t t-1E E   = +   a Ay y . (3.40) 

Because we are assuming stationarity, tE   y  is time-invariant so 

that 1t tE E
−

   =   y y  and thus 

( ) 1

01t NE −
 ≡ = − μ ay I A , (3.41) 

provided that the matrix 1N −I A  is non-singular, where NI is 
theN N× identity matrix. Clearly, the unconditional mean vector 
μ  in (3.42) must be contrasted with the conditional mean vector: 

− −− −≡ = = +   ℑ   | 1 0 1 11 1| |t t tt t t tE Eμ a A yy y y .(3.42) 

Therefore, using ( )0 1N= −a μI A , the VAR(1) model can be 
rewritten as  

1 1( )t t t−− = − +y μ A y μ u . (3.43) 

If we let t t≡y y -μ  be the mean-corrected time-series, or 
equivalently the vector process expressed in deviations from its 
unconditional mean, we can write the model as: 

t 1 t-1 ty = A y + u  . (3.44) 

Clearly, it is possible to substitute t-1 1 t-2 t-1y = A y + u   in the 
expression (3.45), obtaining  

( ) 2
1 1 2 1 11 2 1t t t t tt t − −− −

= + = + ++y A u A y A u uA y u  .(3.45) 

We can now substitute 2 1 3 2t t t− − −= +y A y u   in the expression 
(3.46), and then keep iterating till we obtain: 

2 3
1 1 1 2 1 3 1

1
... i

t t t t t t i t
i

∞

− − − −
=

= + + + + = +∑y u A u A u A u A u u .(3.46) 

Notice that t t= −y y μ , so that (3.47) can also be re-written as  

1
1

i
t t i t

i

∞

−
=

= + +∑y μ A u u . (3.47) 

If we define 1
i

i ≡Θ A , we can rewrite (3.48) as  

1
t i t i t

i

∞

−
=

= + +∑y μ Θ u u , (3.48) 

which is the vector moving average (VMA) infinite 
representation of the VAR(1) model and that it is immediately 
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useful to discuss its properties. First, because tu  is serially 

uncorrelated, it is also uncorrelated with the past values of ty , i.e., 

1[ , ]t tCov − =u y 0 . For this reason, tu  is often referred to as the 
vector of innovations of the series at time t. Second, post-
multiplying the expression (3.48) by 'tu , taking the expectation, 

and exploiting again the fact that tu  is serially uncorrelated, we 

obtain , ut tCov   =  Σy u . Third, (3.48) implies that in a VAR(1) 

model, ty  depends on the past innovations t j−u  with a coefficient 

matrix j
1A , i.e., with coefficients that are collected in increasing 

powers of the VAR(1) matrix. For such dependence to fade 
progressively away as the time distance between ty  and past 
innovations grows—which seems to be a sensible condition, in the 
sense that in the VAR(1) model past shocks are gradually forgotten 
in a typical geometric decaying fashion— j

1A  must converge to zero 
as j goes to infinity. In practice, this means that all the N 
eigenvalues of the matrix 1A  must be less than 1 in modulus, in 

order to avoid that j
1A  will either explode or converge to a nonzero 

matrix as j goes to infinity. Therefore, provided that the covariance 
matrix of tu  exists, the requirement that all the eigenvalues of 1A  
are less than one in modulus is a necessary and sufficient condition 
for ty  to be stable (and, thus, stationary, as stability implies 
stationarity as discussed in Chapter 2), that is: 

1det( ) 0N z− ≠I A , for | | 1z ≤ .1 (3.49) 
Of course, you will recognize that under (3.48), (3.49) represents 
the multivariate extension of the Wold’s representation theorem 
already stated in Chapter 2 for univariate stationary time series. 
Finally, using expression (3.48), we have that  

                                                            
1 The condition in (3.50) is simply an alternative way to state that all the 
eigenvalues of the matrix A must be less than one in modulus. In fact, all 
the eigenvalues of matrix 1A are less than one in modulus if and only if 

the polynomial 1det( )N z−I A has no roots in and on the complex unit 
circle.  
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( ) ( )2 2
0 1 1 1 11 1

0
' ' ... 'i i

u u u ut
i

Cov A
∞

=

  ≡ Γ = + + + =  ∑Σ A Σ A A Σ Σy A A ,  

where 0
1A  is a N N×  identity matrix NI . Also in this case, this is to 

be contrasted with the conditional covariance matrix for ty : 

1 1 1 1 1 1[ | ] [ | ] [ | ] 't t t t t t u uCov Cov Cov− − − −ℑ = = + =y y y A y y A Σ Σ ,  

because 1 1[ | ]t tCov O− − =y y . Interestingly, while the unconditional 
covariance matrix is a complex function of both the covariance 
matrix of the residuals, uΣ , and of the matrix of vector 
autoregressive coefficients 1A , conditioning on past information, 
the covariance matrix of ty  is the same as the covariance matrix of 
the residuals, uΣ ; therefore, when the residuals are simultaneously 
uncorrelated (i.e., uΣ  is diagonal), then also −1[ | ]t tCov y y  will be 
diagonal. 
To find a more useful expression in place of (3.51), note that it can 
alternatively be written as  

0
0

'i u i
i

∞

=

Γ =∑Θ Σ Θ , (3.52) 

where the coefficients iΘ  are simply the coefficients of the moving 
average representations of the VAR. This way of representing 
(3.51) is quite convenient because these coefficients can be easily 
recovered once we write the VAR(1) process in lag operator 
notation, that is, 

= + +( )t t tLy μ A y u , (3.53) 
or, alternatively, 

( ) t tL = +A y μ u , (3.54) 
where L  is the lag operator discussed in Chapter 2 and 

( ) ( )NL L≡ −A I A . At this point, let 
0

( ) i
i

i
L L

∞

=

≡∑Θ Θ  be an operator 

such that ( ) ( ) NL L =Θ A I  and pre-multiply (3.55) by ( )LΘ  to obtain 
( ) ( )t tL L= +y Θ μ Θ u , (3.55) 

that is, 
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0 0
t i i t i

i i

∞ ∞

−
= =

= +∑ ∑y Θ μ Θ u . (3.56) 

This means that the operator ( )LΘ  is the inverse of ( )LA . With a 
modicum of additional but tedious algebra (that the interested 
Reader can find in Lütkepohl, 2005), it is possible to prove that  

1
1

i

i i j
j

−
=

=∑Θ Θ A , (3.57) 

where 0 N=Θ I . Finally, post-multiplying by  in equation 
(3.45), taking expectation, and exploiting the fact that 

, 't t j t t jCov E− −
   = =   u y u y 0  for 0j > , we obtain  

    for 0h > .  (3.58) 

Therefore, the cross-covariance matrices hΓ  can be computed as  

h 1 h-1=Γ A Γ for 0h > .  (3.59) 
By repeated substitution, it is easy to show that  

h
h 1 0=Γ A Γ for 0h > , (3.60) 

and thus, once 0Γ  has been computed, all the other cross-
covariance matrix for 0h >  can be calculated by recursive 
substitution. 
Finally, by pre- and post-multiplying (3.60) by -1/2D  we can also 
work out the expression of the cross-correlation matrix, that is, 

-1/2 -1/2 -1/2 1/2 -1/2 -1/2
h 1 h-1 1 h-1 h-1= = =ρ D A Γ D D A D D Γ D Ψρ ,   (3.61) 

where 1/2 1/2
1

− −=Ψ D A D . Again, by recursive iteration we obtain  
h

h 0=ρ Ψ ρ for 0h > ,                                                  (3.62) 

and thus, once 0ρ  has been computed, it is trivial to obtain all the 
other correlation matrices. 

Example 3.2. Let us suppose that we have estimated the following VAR(1) model 
for the one-month and the ten-year Treasury yields that were 
already plotted in Example 3.1. Without entering into the details of 
the estimation, that we shall discuss in Section 2.4 (we shall 
provide a complete sample output in Example 3.3), we only report 
the estimated coefficients (t-statistics are in square brackets), 
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[ 2.5382] [210.6540] [0.4077]1 , 1 , 1 1 ,

10 , 10 , 1 10 ,
[0.8711] [3.3784] [240.0320]

-0.0490  0.9819  0.0209

 0.0080  0.0009  0.9970
− −

−

           = + +                

M t M t M t

Y t Y t Y t

y y u
y y u

, 

and the estimated covariance matrix of the reduced-form residuals 
is: 

0.0476 0.0013ˆ
0.0013 0.0110
 

=  
 

uΣ . 

We also compute the unconditional first and second moments of 
the series. Let us start from the mean, that can be computed quite 
easily by applying the formula in (3.42): 

( )
1

1
02 1

1

1 0 0.9819 0.0209 -0.0490
0 1 0.0009 0.9970 0.0080

0.1801 -0.0209 -0.0490 84.53 588.90 -0.0490 0.5692
-0.0009 0.0030 0.0080 25.36 510.00 0.0080 2.837

−
−

−

      
= = − =−       

      

        
= =        

        

μ aI A

4
 
 
 

. 

Therefore, the one-month Treasury yield has an unconditional 
mean of approximately 57 bps, while the ten-year Treasury yield 
has an unconditional mean of approximately 284 bps, which 
implies an average riskless yield spread of 227 bps per year. 
Knowing that the one-month Treasury yield on Sept. 30, 2016 was 
0.16%, and the ten-year Treasury yield was 1.58%, we can also 
compute their conditional expectations: 

[ ]|09/30/16 09/30/16 0 1 09/30/16

-0.0490 0.9819 0.0209 0.16
|

0.0080 0.0009 0.9970 1.58

0.1411
1.5834

     
= = + = +     

     
 

=  
 

t tEμ y y a A y
 

For completeness, we note that, at least in hindsight, on October 7, 
2016, i.e., one period (week) later, the one-month Treasury yield 
turned out to be 0.21% and the ten-year Treasury yield was 1.70%. 
The differences between the conditional expectations of the yields 
and their realized value, approximately 7 and 12 bps, respectively, 
are the forecast errors, that we shall discuss in Section 2.6. 
We now compute the unconditional covariance matrix of the two 
series, 0Γ : 
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⇨  ⇨  

 

 
Plugging in the estimates reported above, we find: 

( ) ( )

1

1

40 4 1 1

0.9641 0.0205 0.0205 0.0004
0.0009 0.9790 1.88 05 0.0208ˆ ˆ ˆˆ
0.0009 1.88 05 0.9790 0.0208

8.10 0.7 0.0009 0.0009 0.9940

0.0476
0.0013
0.0013
0.0110

−

−

  
  −   = = −Γ − ⊗    −
   −  

 
 
 ×
 

 

u

e
vec vec I

e
e

ΣI A A

29.9370 41.6850 41.6850 292.152 0.0476 4.7461
1.7951 60.0539 12.5807 252.762 0.0013 2.9602
1.7951 12.5807 60.0539 252.762 0.0013 2.9602
0.5418 10.8845 10.8845 242.671 0.0110 2.7235

     
     
     = =
     

      
     

,  
which gives the unconditional covariance matrix: 
  . 

Clearly, conditional ( ˆ
uΣ ) and unconditional second moments are 

radically different: the residuals, also because both series are 
highly serially correlated, have very low variances and a 
correlation of 0.057 (= 0.0013/(0.0476x0.0110)1/2). In 
unconditional terms, one-month and ten-year rates are 
characterized by rather large standard deviations (2.179 and 1.650 
percent per year) and a correlation of 0.823 (= 
2.960/(4.746x2.724)1/2). The latter is more in line with reality and 
asset pricing expectations, of course. 
 

2.3 Generalization to a VAR(p) Model 
Now that we have analyzed the properties of a VAR(1) model, their 
generalization to the VAR(p) model 

0 1 1 2 2 ...t t t p t p t− − −= + + + + +y a A y A y A y u , that we presented in 
(3.11) should be quite obvious. 
Using again the lag operator L as we did for the VAR(1), (3.11) can 
be rewritten as  

( ) 01 ... p
t tN pA L A L = +− − − y a uI , (3.63) 
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where NI  is the N N×  identity matrix. More compactly, (3.64) can 
be rewritten as  

0( ) t tL = +A y a u , (3.64) 

where now 1( ) ... p
N pL L L= − − −A I A A . Assuming that ty  is weakly 

stationary, we obtain that 

( ) 1

1 0...N ptE
−

− − − = =  I A Aμ ay , (3.65) 

provided that the inverse of the matrix ( )1 ...N p− − −I A A  exists. 

Also in this case, the conditional mean vector has expression 

− −− =
≡ = +   ∑| 1 01 1

| p
t t j t jt t j

Eμ a A yy y . Again, for notational 

convenience, we can transform equation (3.11) by defining 

t t= −y y μ : 

1 1 2 2 ...t t t p t p t− − −= + + + +y A y A y A y u    . (3.66) 
Using this equation and applying the same techniques that we have 
applied in the case of the VAR(1) in Section 2.2, it is possible to 
show that: 
 tcov , u  = t Σy u , the covariance matrix of tu ; 

 cov ,t h t−
  =  0y u

 
 for any 0h > ; 

 h 1 h-1 p h-p...= + +Γ A Γ A Γ  for h>p; 

 h 1 h-1 p h-p...= + +ρ Ψ ρ Ψ ρ  for h>p, where -1/2 1/2
i i=Ψ D A D . 

Naturally, all the considerations that we have expressed with 
references to a VAR(1) can easily be generalized to a VAR(p) 
model. Such an effort simplifies if we consider that a VAR(p) model 
can be represented as a Kp-dimensional VAR(1). To this end, define  
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,(3.67) 

which is also known as the companion matrix of the VAR(p) system, 
and 

( ) 1
[   ... ] '

×
≡t t

Kp
U u 0 0 . Then a VAR(p) model can be written as  
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1 1t t t−= +ξ F ξ U ,  (3.68) 
where  

[ ]

...

...
'

...

...

 
 
 =
 
 
 

  

u

t tE

Σ 0 0
0 0 0

U U

0 0 0

 and [ ]' − =t t hE U U 0  for 0h > .   

Clearly, (3.69) can be represented in the same form of equation 
(3.48), i.e., in its VMA representation, 

2
1 1 1 2 1

1
... i

t t t t t i t
i

∞

− − −
=

= + + + = +∑ξ U F U F U F U U , (3.70) 

that is, denoting 1 'i
i ≡Π JF J , where ', ,...,N ≡  J I 0 0 , we have: 

1
t i t i t

i

∞

−
=

= +∑ξ Π U U . (3.71) 

It follows that a VAR(p) model is stable (and thus stationary) as 
long as the eigenvalues of the companion matrix 1F  defined in 
(3.68) are all less than one in modulus, which, implies 

1det( ... ) 0p
N pz z− − − ≠I A A , for | | 1z ≤  . (3.72) 

This condition states that the roots of the characteristic polynomial 
associated with the matrix should all exceed one in modulus (i.e., 
they should lie outside the unit circle) or, equivalently, that the 
(inverse) roots from the characteristic polynomial should all lie 
inside the unit circle, as we already discussed in Chapter 2 for 
univariate AR models. 

2.4 Estimation of a VAR(p) Model 
Let us consider an unrestricted, stationary VAR(p) model similar to 
the one specified in (3.11) and suppose that we want to estimate 
its parameters.2 Following the notation in Lütkepohl (2005), we 
can write (3.11) as  

= +Y BZ U ,  (3.73) 

                                                            
2 A model is said to be unrestricted when the estimation process is 
allowed to determinate any possible value for the unknown parameters; 
on the contrary, a model is restricted if the estimation procedure restricts 
the parameters in some way (for instance, by imposing that some of them 
is equal to constant values). 
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where  , 0 1 2, , ,..., p ≡  a A A AB  

1 2 T, ,..., ≡  U u u u , and 0 1 T-1, ,..., ≡  Z Z Z Z  with 

t 1 2 1[ ',  ' , ' , ... , ' ] '− − − +≡ t t t pZ 1 y y y . Also consider that ( )vec≡y Y , 
( )vec≡β B , and ( )vec≡u U , where “vec” is the column stacking 

operator that stacks the columns of a matrix in a column vector. 
Also recall that the covariance matrix of the residuals is uΣ .  
The multivariate LS estimator (here a GLS estimator) of β  
minimizes the quantity: 

                                (3.74) 

Although we shall skip the details of the computation of the 
estimator (which the interested Reader may find in Lütkepohl, 
2005), it is useful to report the solution to the problem: 

( )( ) ( )− − −= =⊗ ⊗ ⊗1 1 1ˆ ( ') ( ')u u Nβ y yZZ Σ Z Σ ZZ Z I .(3.75) 
Notably, the GLS estimator in (3.76) is identical to the OLS 
estimator obtained by minimizing: 

( ) ( )   = = − −⊗ ⊗   ( ) ' '' 'N NS β u u y β y βZ I Z I ,(3.76) 

as demonstrated by Zellner (1962). Therefore, as mentioned 
before, a standard, unrestricted VAR(p) can be simply 
estimated equation by equation by OLS. We shall call such an 
estimator B̂ : by construction, being obtained by stacking rows of 
β̂  OLS estimators obtained equation-by-equation, B̂  is a N x (p + 1) 
matrix. 
The finite-sample properties of the LS estimator are difficult to 
derive analytically given the complexity of the expression in (3.76) 
and therefore we only discuss its asymptotic properties here. 
Under standard assumptions (see Lütkepohl, 2005, for details), the 
OLS estimator B̂  is consistent and asymptotically normally 
distributed,  

− → ˆ
ˆvec( ) (0, )DT N

B
B B Σ , (3.77) 

where the vec of B̂  needs to be taken to turn the estimator into a 
vector. This result can also be written more intuitively as  

,  (3.78) 
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where the “a” on the top of distribution symbol means 
“asymptotically distributed as” and 1

ˆ plim( '/ ) uT −= ⊗BΣ ZZ Σ . 
Intuitively, this means that as →∞T , the covariance matrix of the 
OLS estimator converges (in the sense that deviations from the 
right-hand side of the formula carry a very small probability) to a 
complex web of inverse average cross-products between lagged 
values of the endogenous variables, −1plim( '/ )TZZ , multiplied by 
each of the elements of the covariance matrix of the structural 
residuals, uΣ . A few Readers will note the analogy with the 

σ −2 1( ' )u X X  expression in Chapter 1. 

The covariance matrix uΣ  can be estimated as  

=

=
− ∑

1

1ˆ ˆ ˆ '
T

u t t
tT Np

Σ u u   or  
1

1 ˆ ˆ '
T

u t t
tT =

= ∑Σ u u . (3.79) 

where . Both estimators are consistent and 
asymptotically normally distributed independently of B̂ . The first 
estimator is sometimes referred to as the “degree-of-freedom 
adjusted” version of the covariance matrix estimator. 

 
Alternatively, one may estimate a VAR(p) model using maximum 
likelihood methods. Given a sample of T observations on the N-
variate variable Y defined as above and a pre-sample of p initial 
conditions − + − +1 2 0, ,...,p py y y , under the assumption that the 
process is stationary and that innovations are a Gaussian 
multivariate white noise, the variables 1 2 ', ,..., T =  Y y y y  will also 
be jointly normally distributed. In addition, because the 
multivariate white noise is assumed to be Gaussian, the 
innovations at different times will be independent (which allows 
for considerable simplification when computing the likelihood 
function). The noise error terms are assumed to be independent 
with covariance matrix uΣ  and, as an implication, u  (that is the 
vectorization of U  as discussed above) has a covariance matrix 

U T u= ⊗Σ I Σ . As a cumulative result of all these assumptions, u  
has the following NT-variate normal density: 
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1
12 2 1( ) (2 exp '( )

2

NT

T u T u
f π

− −
− = ) ⊗ − ⊗ 

 u u I Σ u I Σ u .  

The density function in (3.81) can also be expressed in terms of the 
endogenous variables: 

 
1

12 2 1( ) (2 exp ( )'( )( )
2

NT

y T u T u
f π

− −
− = ) ⊗ − − ⊗ − 

 
y I Σ Y BZ I Σ Y BZ .

 (3.81) 
Therefore, the log-likelihood that should be maximized can be 
represented as follows: 

 

( )

1

1

1( , ; , ) ln ( ) ln(2 ln ( )'( )( )
2 2 2

1ln(2 ln tr '
2 2 2

u y T uu

u u

NT Tf

NT T

π

π

−

−

= = − ) − − − ⊗ −

= − ) − −

B Σ Y Z Y Y BZ I Σ Y BZΣ

Σ U Σ U



. (3.82) 
Importantly, under the assumption of Gaussian innovations, the 
OLS estimator in (3.76) is equivalent (conditional on the initial 
values, i.e., the equivalence is in fact to a quasi-ML because of this 
form of conditioning, see Chapter 5 for additional details) to the ML 
estimator of the coefficients. Moreover, the ML estimator of the 
matrix uΣ  is  

'

1

1 ˆ ˆ
T

u t t
tT =

= ∑Σ u u , (3.83) 

which is nothing else than the average cross- vector product of the 
OLS residuals. Substituting the expression for the matrix uΣ  that 
maximizes the likelihood, in the class of all symmetric positive 
definite matrices, back into (3.83), we obtain  

π= − ) − −



1( , ; , ) ln(2 ln
2 2 2u u

NT T NTB Σ Y Z Σ . (3.84) 

This object is also known as the concentrated log-likelihood of the 
VAR(p) model. Optimizing (3.83) in one pass or maximizing over 
(3.84)-(3.85) iterating between the two objects until convergence 
is achieved, will return identical results. Example 3.3 shows the 
typical estimation outputs of OLS estimation of a VAR model. 
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Example 3.3. Consider the weekly yields of the one-month, one-year, five-year, 

and ten-year US Treasury bonds between January 1990 and 
December 2016 (for a total of 1,408 observations). Suppose that 
we specify a VAR(1) model for the series. Using Eviews, we have 
estimated the following model: 

(-0.775) (0.000) (0.000) (0.035) (0.288)
1 ,

( 0.042) (0.000) (0.000) (0.028)1 ,

5 ,
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where p-values are reported in brackets. The estimated covariance 
matrix of the residuals is: 

0.043 0.001 0.001 0.001
0.001 0.007 0.007 0.005ˆ
0.001 0.007 0.012 0.011
0.001 0.005 0.011 0.012

 
 
 =
 
 
 

uΣ . 

The complete estimation output is reported in Table 3.3. Below 
each estimated coefficient, the Reader finds the standard errors 
and the associated p-values (in brackets). The coefficients that are 
statistically significant at a size of the test lower or equal to 5% are 
boldfaced. 
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Yield 1M Yield 1Y Yield 5Y Yield 10Y

Yield 1M (-1) 0.835 -0.031 -0.016 -0.007
0.012 0.005 0.007 0.006

(0.000) (0.000) (0.012) (0.260)

Yield 1Y (-1) 0.219 1.023 0.022 0.008
0.022 0.009 0.012 0.011

(0.000) (0.000) (0.059) (0.456)

Yield 5Y (-1) -0.083 0.034 0.993 0.008
0.039 0.015 0.021 0.020

(0.035) (0.028) (0.000) (0.703)

Yield 10Y (-1) 0.032 -0.031 -0.001 0.988
0.030 0.012 0.016 0.015

(0.288) (0.010) (0.960) (0.000)

C -0.008 0.021 0.009 0.016
0.027 0.010 0.014 0.013

(0.775) (0.042) (0.527) (0.217)
 R-squared 0.993 0.999 0.997 0.997

 Adj. R-squared 0.993 0.999 0.997 0.997
 Sum sq. resids 59.956 9.306 16.509 15.014
 S.E. equation 0.207 0.081 0.108 0.103

 F-statistic 51568.215 303363.793 139899.774 117486.468
 Log likelihood 224.179 1535.678 1132.122 1198.978

 Akaike AIC -0.311 -2.174 -1.601 -1.696
 Schwarz SBC -0.293 -2.156 -1.582 -1.677

 Mean dependent 3.035 3.166 4.155 4.735
 S.D. dependent 2.512 2.393 2.166 1.893
 Log likelihood 6215.082

 Akaike AIC -8.800
 Schwarz SBC -8.725  

Table 3.3 – Estimation output of a VAR(1) model for the one-
month, one-, five-, and ten-year yields of the U.S. Treasury bonds 

Each column of Table 3.3 represents one equation of the system; 
because usually equations are written as rows, this implies that 
they have been flipped around to populate the columns. For 
instance, the first column corresponds to the first equation of the 
VAR(1): 
 

1 , 1 , 1 1 , 1 5 , 1 10 , 1( 0.775) (0.000) (0.022) (0.039) (0.288)
0.008 0.835 0.219 0.083 0.032− − − −−

= − + + − + +M t M t Y t Y t Y t ty y y y y u
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As we have discussed, each equation can be estimated separately 
by OLS. Therefore, the second panel of Table 3.3 presents standard 
OLS regression statistics for each equation (including the R-square 
and the adjusted R-square), to which we can attribute the same 
meaning that has been attached to them in Chapter 1. For example, 
the F-statistic refers to the null hypothesis that all the lags of the 
endogenous variables are jointly non-significant in each of the 
system equations. The numbers at the very bottom of the table are 
instead the summary statistics for the VAR system as a whole. For 
instance, because an overall, multivariate R-square statistic is not 
obviously defined, while for each single equation we do report one 
R-square, in overall terms it makes sense to report the maximized 
log-likelihood, also because we know that the OLS and ML 
estimators are identical when the errors are multivariate normal. 
In this example, we have assumed that one lag of the endogenous 
variables was sufficient to explain the key features of the data. 
However, this assumption was rather arbitrary. Therefore, in 
Section 2.5, we shall discuss how we can decide the appropriate lag 
length for a general VAR model. 
 

Before we move on, we shall summarize below two extremely 
important results that we have discussed (although we have not 
provided the proofs) in this section:  
 when a reduced-form VAR is unconstrained, the GLS 

estimator is the same as the OLS estimator and therefore an 
unconstrained VAR can be estimated equation by equation 
by OLS; 

 for an unconstrained VAR, the ML and OLS estimators are 
the same under the assumption of Gaussian innovations 
(further discussion of this topic is provided in on-line 
supplementary material). 

2.5 Specification of a VAR Model and Hypothesis Testing 
In Section 2.4, we have discussed how to estimate a VAR model of 
order p, but we have not explained how a researcher may go about 
deciding the appropriate number of lags to be included. In general, 
increasing the order of a VAR model reduces the (absolute) size of 
the residuals and improves the fit of the model, but also its 
forecasting power. Equivalently, as it is often the case in applied 
econometrics, by increasing the number of parameters of the 
model, we generally improve its in-sample accuracy, at expenses of 
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its out-of-sample predictive power. This occurs because in a VAR, 
long lag lengths quickly consume degrees of freedom in the 
individual regression equations (i.e., the number of observations 
minus the number of parameters to be estimated): if the lag length 
is specified to be p, each of the N equations will contain Np  
coefficients plus the intercept term. Therefore, appropriate lag 
selection is usually crucial to the usefulness of VAR(p) models. In 
the following, we discuss the selection of the common lag length 
parameter p to apply to all equations of the VAR model. This 
prevents us from considering the case of restricted, standard 
VAR models in which the structure and number of lags included in 
each equation may vary across different equations. These models 
can be useful but tend to be less frequently used in applied 
finance.3 
A first method that can be used to select the appropriate lag length 
is the likelihood ratio (LR) test. In order to understand how this 
works when applied to the selection of p, suppose that we want to 
test the hypothesis that a set of variables was generated from a 
Gaussian VAR with 0p  lags against the alternative specification of 

1 0p p>  lags. For instance, assume that we aim at testing whether 
4 lags are appropriate, against an alternative specification with 5 
lags. Under the assumption of normally distributed shocks 
entertained earlier (or when the VAR is assumed to be correctly 
specified under the quasi-MLE principle), the likelihood ratio 
statistic is 

( )= − 
0 1

0 1( , ) ln p p
uu

LRT p p T ΣΣ , (3.85) 

where T is the number of usable observations, 0p
uΣ  is the 

determinant of the covariance matrix estimated under the 
hypothesis that the VAR model includes p0 (say, 4) lags of all the 
                                                            
3 This has a simple justification: when the VAR includes restrictions, then 
the numerical equivalence between ML, GLS, and OLS estimators breaks 
down, and consistent estimation needs to be performed jointly using ML 
methods applied to the full multivariate model. As for their specification, 
the number of lags in each of the individual equations is often specified 
using simple t- or F-tests to either go general-to-simple, or simple-to-
general. Moreover, there is an inner incoherence between estimating a 
multivariate model by MLE and performing lag length specification tests 
at an equation-by-equation level. 
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variables and 1p
uΣ  is the determinant of the covariance matrix 

estimated under the alternative hypothesis that the VAR model 
contains p1 (say, 5) lags. 
As an alternative, Sims (1980) has proposed a small sample 
modification of the LR statistic in (3.87) that consists of using 

( 1)T Np− +  rather than T as its scale factor, where Np + 1 is the 
number of parameters per equation under the alternative 
hypothesis: 

( )= − − − 
0 1

0 1'( , ) ( 1) ln p p
uu

LRT p p T Np ΣΣ .  (3.86) 

Both statistics have an asymptotic 2χ  distribution with degrees of 
freedom equal to the number of restrictions in the system, N(p1 – 
p0). In our example, there are N restrictions in each of the N 
equation, for a total number of 2N  restrictions. Large values of the 
test statistics in (3.86)-(3.87) trigger a rejection of the null 
hypothesis that 0p  lags are sufficient to capture the key features of 
the (conditional mean function of the) data. On the contrary, if the 
calculated value of the statistic is less than the critical value of the 

2χ  corresponding to the specified size of the test, we will not be 
able to reject the null that 0p  lags are sufficient. When this occurs, 
we may think of restricting the model even more, and calculate the 
likelihood ratio statistic under the null that less than 0p  (say, 

= 3 ) are adequate, against the alternative of 0p  and to 
iterate this procedure until we can reject the null hypothesis. This 
way of specifying the model by sequential LR testing the lag order 
of a VAR(p) is said to represent a general-to-simple approach.4 
On the one hand, LR tests are quite intuitive, and they are 
applicable to any type of cross- and within-equation restrictions. 
For instance, let U

uΣ  and R
uΣ  be the covariance matrices of the 

residuals of the unrestricted system and of the restricted one, 
respectively, for whatever types of restrictions (e.g., that the 

                                                            
4 Technically, a general-to-simple approach should impose that the size of 
the tests be adjusted because—being based on a common sample—the 
tests fail to be independent. However, this issue tends to be disregarded 
in practice. 
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covariances between alternative pairs of reduced-form residuals 
be identical). Then the statistic  

( )− ln R U
u uT Σ Σ  (3.87) 

can be compared to a 2χ  distribution characterized by a number of 
degrees of freedom equal to the number of restrictions in the 
system. In case the resulting sample statistic is less than the critical 
value under a 2χ  at the specified size level, we shall not reject the 
null hypothesis that the restricted model is adequate to fit the data.  
On the other hand, LR tests can only be used to perform a pairwise 
comparison of two VAR systems, one that is obtained as a 
restricted version of the other. We also say that the smaller VAR 
with fewer lags is nested inside the bigger VAR with a larger 
number of lags. As a consequence, if we want to determine the 
appropriate number of lags that are needed to best characterize a 
sample, we have first to specify the largest VAR and then proceed 
to pair it down until we can reject the null hypothesis, meaning 
that while in some applications going simple-to-general may be 
logically appealing, sequential LR testing is inconsistent with it. A 
further drawback of the LR test approach is that, as already 
emphasized, the 2χ  test will be valid asymptotically only under the 
assumption that errors from each equation are normally 
distributed. In general, without distributional assumptions, it is 
unclear whether performing LR tests may have any merit. Finally, 
when the sample size is small, it remains unclear whether LR tests 
may display reasonable power without being subject to substantial 
size distortions (see Hoffman and Schlagenhauf, 1982, for a 
discussion). 
An alternative approach to the selection of the appropriate lag 
length is to minimize a multivariate version of the information 
criteria that were firstly presented in Chapter 2, namely: 

( ) ln 2u
KM AIC
T

= +Σ , (3.88) 

( ) ln ln( )u
KM SBC T
T

= +Σ , (3.89) 

( ) ln 2 ln(ln( ))u
KM HQIC T
T

= +Σ , (3.90) 

where (M) stands for multivariate (to signal that this is a 
multivariate generalization of the univariate versions proposed in 
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Chapter 2), uΣ  is the estimated covariance matrix of the residuals, 
T is the number of observations in the sample, and K is the total 
number of regressors across all equations in the VAR(p) (that is, 

+2N p N , where N is the number of equations and p  is the 
number of lags).5 The intuition behind the criteria and the 
properties that we discussed in Chapter 2 fully apply to their 
multivariate generalizations.  
Finally, it is interesting to introduce one additional criterion to 
determine the model order/lag length proposed by Akaike (1969), 
namely, the final prediction error (FPE) measure: 

 + +
=  − + 



1( )
1

N

u
T NpFPE p
T Np

Σ , (3.91) 

where uΣ  is the determinant of the estimated covariance matrix 
of the residuals from a given VAR(p) model. Example 3.4 shows 
how these criteria can be used and compared to select the best 
fitting VAR(p) model. 
 

Example 3.4.   In Example 3.3, we have specified a VAR(1) model for the weekly 
yields of one-month, one year, five-year, and ten-year US Treasury 
bonds. However, we have failed to check whether a larger VAR 
model could be more appropriate to fit the data. 
Table 3.4 shows the values of the information criteria that we have 
just discussed for a number of lags ranging between 0 and 15. It 
also reports the maximized log-likelihood associated to each model 
and the sequential (modified, in the sense that it is computed 
applying Sims’ small sample adjusted in (3.87)) log-likelihood test 
outcomes. Therefore, the second row reports the LR test of 1=p  
versus the alternative 2=p , the third row tests the null of 2p =  
versus the alternative 3p = , and so on. In the general, the kth row 

                                                            
5 When a VAR is estimated equation-by-equation by OLS, the covariance 
matrix is just computed residually as a result of the estimation process, as 
we know from Chapter 1. However, when a VAR model is estimated by 
MLE (and this must occur when it is restricted and thus OLS is not a 
consistent estimator), we should in principle take into account also the 

+( 1)/2N N  elements of the covariance matrix as parameters to be 
estimated. 
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shall use a LR statistic to test the null of 1= −p k  versus the 
alternative of =p k . 

 Lag LogL LR FPE AIC SC HQ

0 -4979.73 NA 0.015 7.150 7.1653 7.1559
1 6156.06 22191.71 1.77E-09 -8.804 -8.728 -8.775
2 6258.44 203.42 1.56E-09 -8.927 -8.792* -8.877*
3 6278.01 38.77 1.55E-09 -8.933 -8.737 -8.859
4 6293.26 30.13 1.55E-09 -8.932 -8.676 -8.836
5 6348.24 108.32 1.47E-09 -8.987 -8.672 -8.869
6 6369.05 40.87 1.46E-09 -8.994 -8.618 -8.854
7 6384.72 30.68 1.46E-09 -8.994 -8.558 -8.831
8 6400.32 30.47 1.46E-09 -8.993 -8.497 -8.808
9 6413.26 25.20 1.47E-09 -8.989 -8.433 -8.781

10 6436.94 45.96 1.45E-09 -9.000 -8.383 -8.769
11 6454.65 34.26 1.45e-09* -9.002* -8.326 -8.749
12 6467.35 24.53 1.45E-09 -8.998 -8.261 -8.722
13 6484.71 33.39 1.45E-09 -9.000 -8.203 -8.702
14 6498.44   26.331* 1.46E-09 -8.996 -8.139 -8.676
15 6509.84 21.82 1.47E-09 -8.990 -8.073 -8.647  

Table 3.4 – VAR selection criteria applied to one-month, one-, five- 
and ten-year U.S. Treasury yields 

Unsurprisingly, as we have already observed in Chapter 2, different 
criteria may lead to different lag selections. In this case, the AIC 
and the FPE select quite a large VAR(11) model, while the Schwarz 
and the HQ criteria favor a more parsimonious VAR(2) model. 
However, a VAR(11) model for the four Treasury yield series 
requires the estimation of a 180 parameters 
( 2 24 11 4 180N p N+ = × + = ) with a saturation ratio (that is, the 
number of observations available across the entire model per each 
parameter that has to be estimated) of only 7.8. Instead, a VAR(2) 
model implies the estimation of only 36 parameters, with a much 
safer saturation ratio of 39.1 parameters. Therefore, we elect to 
specify and estimate the VAR(2) model below (p-values are in 
parentheses): 
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1 ,
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, 

with estimated covariance matrix of residuals equal to  

0.043 0.001 0.001 0.001
0.001 0.006 0.006 0.005ˆ
0.001 0.006 0.011 0.010
0.001 0.005 0.010 0.010

 
 
 =
 
 
 

uΣ . 

The coefficients that are significant at a confidence level lower or 
equal than 5% have been highlighted.  

2.6 Forecasting with a VAR model  
Similarly to what we have discussed in Chapter 2 for AR models, 
one obvious application of VAR models is forecasting. Analogously 
to what we have discussed with reference to univariate models, 
also in the context of VAR models, loss functions that lead to the 
minimization of the mean squared forecast error (MSFE) are the 
most widely used. Evidence in favor of using the MSFE as key 
forecasting index are given, for instance, by Granger (1969b) and 
Granger and Newbold (1986), who show that minimum MSFE 
forecasts also minimize a range of loss functions other than the 
MSFE. Moreover, for many loss functions, the optimal prediction 
function is a simple function of minimum MSFE predictions.  
Consider a (stationary) N-dimensional VAR(p) process similar to 
the one in (3.11). Assume that tu  is an independent multivariate 
white noise, such that tu  and su  are independent for t s≠  and 
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thus [ ]| 0+ ℑ =t t h tE u  for 0h > . The minimum time t MSFE 
prediction at a forecast horizon h is the conditional expected value  

{ }+ +
  ℑ = ≤   | | |t t h t t t h sE E s ty y y , (3.92) 

where tℑ  is the information set containing the variables up to and 
including period t. This prediction minimizes the MSFE of each 
component of the vector ty .Therefore,  

0 1 1| | ... |t t h t t t h t p t t h p tE E E+ + − + −
    ℑ = + ℑ + + ℑ     y a A y A y ,  

is the optimal h-step-ahead predictor of a VAR(p) process. The 
formula in (3.94) can be used recursively to compute h-step-ahead 
predictions starting with 1h = . For instance, let us consider the 
case of a VAR(1) model. The one-step-ahead forecast of ty  with 
origin at time t is  

+   ℑ = + ℑ = +   1 0 1 0 1| |t t t t t t tE Ey a A y a A y ,(3.94) 

where |t t t tE  ℑ = y y , given that we are at time t. Then, in order 
to obtain the two-step-ahead forecast we can simply use the value 

1 |t t tE +
 ℑ y  that we have just computed. Through this iterative 

process, we can compute the h-step-ahead forecast. The 
conditional expectation that turns out to provide the minimum 
MSFE has the following properties:  
 it is an unbiased predictor, meaning that 

| 0t h t t h tE E+ +
  − ℑ =  y y ; 

 if tu  is an independent white noise vector (that, as we shall 
recall, is a stronger assumption than being uncorrelated), 

[ ] [ ]1| , ...+ + −=      t t h t t h t tMSFE E MSFE Ey y y y , meaning 
that MSFE of the prediction equals the conditional MSFE 
given 1, ,...t t−y y . 

In case tu  is not an independent white noise, additional 
assumptions are required to find the optimal prediction of a 
VAR(p) process. However, without these assumptions it is still 
possible to find the minimum MSFE predictor among those that are 
linear functions of 1, ,...t t−y y . Without going into the details of the 
proof (which can be found in Lütkepohl, 2005), it can be shown 
that the best linear predictor in terms of MSFE minimization is: 
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 0 1 1
|...| | t h p tt t p tt h t t h tE E E + −+ + −

 ℑ   = + + +ℑ ℑ     ya A Ay y .

 (3.95) 
For the sake of simplicity we analyze again the case of a VAR(1) 
model, where the prediction function is  

0 1 1| |t t h t t h tE E
+ + −

   = +ℑ ℑ   a Ay y . (3.96) 

The one-step forecast error (1)

tu  is simply: 

1 11(1) |t t t tt tE+ ++
 = − =ℑ u y uy

, (3.97) 

and the associated covariance matrix of forecast errors is uΣ . By 
iterating over this formula, we can obtain that the h-step forecast 
error ( )

t hu  as 
1

1
0

( ) |
h

i
t t h t t h it h t

i
h E

−

+ + −+
=

 = − =ℑ  ∑u y A uy

, (3.98) 

where 0 = NA I . The covariance matrix of the forecast errors is 

therefore 
1

1 1
0

( ) '
−

=
∑
h

i i

i
A Σ A . The generalization to a VAR(p) model is 

straightforward, although computations are non-trivial (the 
interested Reader is referred to Lütkepohl, 2005). Example 3.5 
shows VAR models in action when it comes to prediction. 
 

Example 3.5.   Figure 3.2 shows the one-week ahead forecasts of the one-month, 
one-, five-, and ten-year U.S. Treasury bond yields obtained from 
the VAR(2) model estimated in Example 3.4.  
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Figure 3.2 –One-week-ahead forecasts of one-month, one-, five- 

and ten-year U.S. Treasury yields from a VAR(2) 
Table 3.5 reports the forecast accuracy measures that have been 
discussed in Chapter 2, namely, the root mean squared error 
(RMSE, which is just the square root of the mean square forecast 
error), the mean absolute error (MAE), and the mean absolute 
percentage error (MAPE). Clearly, the lower these prediction error 
measures are, the higher the practical usefulness of a model. 

Variable Inc. obs. RMSE MAE MAPE

1M Yield 1409  0.21  0.10  35.18
1Y Yield 1409  0.08  0.05  3.63
5Y Yield  1409  0.11  0.08  2.74
10Y Yield 1409  0.10  0.08  1.99

RMSE:  Root Mean Square Error
MAE:  Mean Absolute Error
MAPE:  Mean Absolute Percentage Error  

Table 3.5 – Forecast accuracy measures for a VAR(2) model of 
one-month, one-,five- and ten-year U.S. Treasury yields 
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Obviously, these accuracy measures are useful when we would like 
to compare the predictive power of different models. For example, 
we may want to compare the forecast accuracy of the VAR(2) vs. 
the VAR(11) model that was selected by the FPE and AIC criteria in 
Example 3.4. Table 3.6 displays the forecast accuracy measures for 
the VAR(11) model. It is evident that the VAR(2) and the VAR(11) 
models display very similar predictive power, although the 
VAR(11) slightly outperforms the VAR(2) according to some 
specific indicators. 

Variable Inc. obs. RMSE MAE MAPE

1M Yield 1409  0.19  0.10  48.40
1Y Yield 1409  0.08  0.05  3.96
5Y Yield  1409  0.10  0.08  2.79
10Y Yield 1409  0.10  0.08  1.99

RMSE:  Root Mean Square Error
MAE:  Mean Absolute Error
MAPE:  Mean Absolute Percentage Error  

Table 3.6 – Forecast accuracy measures for a VAR(11) model of 
1-month, 1-,5- and 10-year U.S. Treasury yields 

 

 
3- Structural Analysis with VAR Models 
3.1 Impulse Response Functions 
In Section 2, we have discussed the statistical properties of a 
VAR(p) model, how it can be estimated, and how it can be used in 
forecasting applications. However, VAR models are often used in 
practice with the goal of understanding the dynamic 
relationships between the variables of interest. For instance, in 
Example 3.4, we have estimated a VAR(2) model for the one-
month, one-, five-, and ten-year U.S. Treasury yield series and then, 
in Example 3.5, we have computed and assessed one-step-ahead 
forecasts. However, a researcher may also be interested in 
studying the effects that a sudden increase (decrease) in the 1-
month rate, for instance as a result of a tight (expansive) monetary 
policy, may have on the other yields in the system (when these four 
specific maturity buckets are used to summarize the term 
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structure of the Treasury yield curve). In other words, a researcher 
may be interested in the effects that a shock to one (or more) 
variable(s) produces over the others. Therefore, in this section we 
introduce impulse response functions (in short IRFs). A general 
definition of impulse response function is as follows. 
 

Definition 3.4. (Impulse Response Function) In the context of a VAR model, an 
impulse response functions trace out the time path of the effects of 
an exogenous shock to one (or more) of the endogenous variables 
on some or all of the other variables in a VAR system. 
 

To simplify, let us start our discussion from the simple VAR(1) 
model (written in reduced form) discussed in Section 2.1, namely: 

1, 1,0 1,1 1,2 1, 1 1,

2, 2,0 2,1 2,2 2, 1 2,

−

−

         
= + +         

         

t t t

t t t

y a a a y u
y a a a y u

. (3.99) 

We already know that a stationary VAR(p) model has a moving 
average representation, and, in particular this also applies to the 
VAR(1), i.e., using a compact notation, 

0 1 1−= + +t t ty a A y u , (3.100) 
can be rewritten as  

1
0

∞

−
=

= +∑ i
t t i

i
y μ A u , (3.101) 

or, alternatively, recalling the algebraic steps that we have 
discussed in Section 2.2, to 

0

∞

−
=

= +∑t i t i
i

y μ Θ u , (3.102) 

that is, 
1,1( ) 1,2( )1, 1,1

0 2,1( ) 2,2( )2, 2,2

θ θµ
θ θµ

∞
−

= −

     
= +      
     

∑ i it t i

i i it t i

y u
y u

. (3.103) 

You will also recall from our discussion in Section 2.1 that the two 
error processes, { }1,tu  and { }2,tu  can be also represented in terms 

of the two sequences { }1,tε  and { }2,tε , i.e., the structural (or pure), 

unobserved innovations: 
1, 1,2 1,

2, 2,1 2,1,2 2,1

11
11

ε
ε

−     
=     −−     

t t

t t

u b
u bb b

. (3.104) 
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Therefore, plugging (3.105) into (3.104), we obtain a 2x2 matrix 
iΦ  equal to 

1,2 1,21

2,1 2,11,2 2,1 1,2 2,1

1 1
1 11 1

− −   
= =   − −− −   

i
i

i

b b
b bb b b b

ΘAΦ ,  

and therefore,  

0

∞

−
=

= +∑t i t i
i

y μ Φ ε . (3.106) 

It is now easy to see how the moving average representation of 
the VAR can be useful: the coefficients of the matrix iΦ , i.e., each 

,i jφ  can be used to generate the effects of shocks to the 

innovations 1,tε , 2,tε  on the entire time path of the { }1,ty  and 

{ }2,ty  series. In other words, the four coefficients 1,1( ) ,iφ 1,2( )iφ , 

2,1( )iφ  and 2,2( )iφ  for each i can be regarded as impact 

multipliers. For instance, 1,2(0)φ  represents the instantaneous 

impact on 1,ty of a one-unit change in 2,tε  (i.e., the structural 

innovation to 2,ty ), while 1,2(1)φ  is the one-period response of 

1,ty  to the same unit change in 2, 1tε − . The cumulative effects of a 

one-unit shock (or impulse) to 2,tε  on the variable 1,ty  after H 
periods can then be obtained by computing the sum 

1,2( )0

H
ii

φ
=∑ . Clearly, the same result holds for the cumulative 

effects of a unit shock to 1,tε  on 2,ty , which can be computed as 

2,1( )0

H
ii

φ
=∑ , and so on. Interestingly, if we let the horizon H 

approach to infinity, we obtain the so-called long-run 
multipliers. Indeed, as the sequences { }1,ty  and { }2,ty  are 

assumed to be stationary, it follows that  for j, k = 1, 2, 
…, N, is finite. Put into other words, because a VAR model can be 
easily generalized to contain N variables instead of two, the 
element , ( )j k iφ , i.e., the (j,k)th of the matrix iΦ  represents the 
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reaction of the jth variable of the system to a one-unit shock in a 
variable k, i periods ago. Therefore, given Definition 3.4, the set of 
elements , ( )j k iφ  with 1,2,...,i H=  can be easily seen as the 
impulse response function of the jth variable of the system, up to 

the period H. The sum , ( )0

H
j k ii

φ
=∑ , that represents the 

cumulative effects of a shock to variable k on the variable j after H 
periods, is also known as the cumulative response of the variable 
j to a shock to the variable k. 
What is the problem with the VAR representation in (3.107)? If the 
VAR system were identified, i.e., if it were possible to recover all 
the parameters of the structural VAR model from the estimates of 
the VAR in its standard form, it would be possible to trace out the 
effects of a shock to one (or more) of the structural innovations to 
the variables. However, we already know from Section 2.1 that a 
VAR in its reduced form is under-identified by construction and 
therefore we are not able to compute the coefficients , ( )j k iφ  from 
the OLS estimates of the VAR in its standard form unless we do not 
impose adequate restrictions. As we have seen in Section 2.1, one 
method to place these restrictions consists of the application of a 
Choleski decomposition. In practice, by using a Choleski 
decomposition, we can re-write the VMA representation of a 
VAR(1) in (3.103) (note that this also applies to a VAR(p), because 
a VAR(p) can be rewritten as a VAR(1)) such that 

1

0

∞
−

−
=

= +∑t i t i
i

y μ Θ WW u , (3.107) 

where u =Σ WΣW' , 1
1t t

−
−=ε W u , and i i=Φ Θ W . It shall be easy to 

recognize that (3.108) is equivalent to (3.107). However, it should 
be already clear from Section 2.1 that a Choleski decomposition 
allows only the shock to the first variable to contemporaneously 
affect all the other variables in the system. A shock to the second 
variable will produce a contemporaneous effect on all the variables 
in the system, but the first one (this may of course be impacted in 
the subsequent period, through the transmission effects mediated 
by the autoregressive coefficients). A shock to the third variable 
will affect all the variables in the system, but the first two, and so 
on. Therefore, it is important to recognize that this identification 
scheme forces a potentially important identification asymmetry 
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on the system that is typical of Choleski ordering schemes. For 
instance, in our initial bivariate example, a shock to 1,tε  has a 

contemporaneous effect on both 1,tu  and 2,tu  (and thus on 1,ty  

and 2,ty ), but a shock to 2,tε  does not contemporaneously impact 

1,tu  (and thus 1,ty ) . For this reason, 1,ty  is said to be “casually 

prior” to 2,ty , a bit of language that will be better explained later 
on. Of course, as already emphasized in Section 2.1, a different 
ordering of the variables in the system would have been possible, 
implying a reverse ordering of the shocks and that 2,ty  would have 

been “casually prior” to 1,ty . To make our reasoning clearer, in 
Example 3.6 we see how the decomposition works in practice.  
 

Example 3.6. Let us consider a VAR(1) for the one-month U.S. Treasury bill and 
the ten-year Treasury bond yields (the same series for the January 
1990 - December 2016 sample that we have estimated in Example 
3.2): 
 

[ 2.5382] [210.6540] [0.4077]1 , 1 , 1 1 ,

10 , 10 , 1 10 ,
[0.8711] [3.3784] [240.0320]

-0.0490  0.9819  0.0209

 0.0080  0.0009  0.9970
− −

−

           = + +                

M t M t M t

Y t Y t Y t

y y u
y y u

, 

with estimated covariance matrix of the reduced-form residuals: 
. 

As we shall recall from Section 2.1, applying a Choleski 
decomposition we get that 2

1 , 1var[ ]M tu σ= ,  

, 2
1 , 10 , 2,1 1cov[ , ]M t Y tu u b σ= − . Therefore, 2,1b  

is equal to 

, 

and equations (3.29)-(3.30) become  

1 , 1,M t tu ε= , 

 . 
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This means that a shock to 1.tε  equal to one-standard deviation 

(0.218, that is 0.0476 ) causes an immediate change by 0.218 in 

1 ,M tu  (and thus in 1 ,M ty ); in addition, it will also cause an 
immediate increase (albeit very small) of  in 

10 ,Y tu  (and thus in the 10-year Treasury yield) because of the 
implicit correlation structure that is admissible under the selected 
Choleski scheme. At time 1t + , the lagged value of the one-month 
yield enters the first equation with a coefficient 0.9819  and thus 
after one period the one-month yield will grow by 
0.9819 0.218 0.214× =  (i.e., approximately 21 basis points, 
henceforth bps) above what it would have been without the shock. 
The ten-year yield would have been  
higher because of the effect of its own lag. In addition, the lagged 
value of the 1-month yield also enters the second equation with a 
coefficient 0.0009 , and thus the 10-year Treasury yield will rise by 
an additional 0.0009 0.218 0.000196× = ; in total, the 10-year 
Treasury yield would be approximately 0.0062 higher with respect 
to what it would have been without a shock to the 1-month yield. 
Therefore, one period after the one standard deviation shock to the 
one-month Treasury yield has occurred, the cumulative response 
of the one-month Treasury yield to its own shock would have been 
0.218 0.214 0.432+ = , that is, 43 bps. In addition, the accumulated 
response of the ten-year Treasury yield to the one standard 
deviation shock to the one-month Treasury yield would have been 

. The process then progresses further 
over subsequent rounds of impulse and reaction. 
Alternatively, it is easy to see what happens if we give a one 
standard deviation shock to 2,tε  (equal to 0.105): 10 ,Y tu  

immediately increases by 0.105 (and so does 10 ,Y ty ), but nothing 

happens to 1 ,M tu . Therefore, at time 1t +  the 10-year yield would 
be higher by 0.9970 0.105 0.10469× =  (i.e., approximately 10 bps) 
because of the effect of its own lag (for an accumulated response of 
0.209). In addition, the lag of the ten-year yield now affects the 1-
month yield with a coefficient of 0.0209 and therefore the one-
month Treasury yield will be  higher than 
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it would have been without a shock happening to the 10-year 
Treasury yield.  
Figure 3.3 depicts the impulse response functions to a one-
standard deviation shock to the 1-month yield and to the 10-year 
yield on the basis of a Choleski triangular scheme that places the 
one-month yield at the top of the variable ordering. 
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Figure 3.3 – Impulse response functions to shocks to one-month 

and ten-year yields, ordered on the basis of a Choleski triangular 
scheme that places shocks to the one-month at the top of the 

ordering 
 

Notably, as we have seen in Example 3.6, it is not compulsory to 
give simple one standard deviation shocks. A researcher is free to 
give to the system all kinds of shocks that she is interested in or 
that she feels are economically plausible. However, it is quite 
common in practice to study the effects of a shock equal to one 
standard deviation, especially when the variables have different 
scales. Such a rescaling may sometimes give a better picture of the 
dynamic relationships among variables because the average scale 
of the innovations occurring in a system depends on their standard 
deviation.  
Summing up, two points should be clear: 
 a reduced-form VAR, although commonly employed in 
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applied finance, is under-identified and it is not possible to 
recover the structural parameters from its estimates unless 
we impose some restrictions, i.e., identification forces the 
researcher to impose some structure on the system;  

 Choleski decompositions provide a minimal set of 
restrictions concerning the simultaneous relationships 
among variables that can be used to identify the structural 
model (however other identification schemes, based on a 
theoretical background, are of course possible but appear 
to be less common in finance). 

It should be also clear that under a Choleski decomposition the 
ordering of the variables in the system is important: it is indeed 
crucial which of the variables is placed first and which one is 
placed second, and so on. In addition, the relevance of the ordering 
depends on the magnitude of the correlation coefficients between  
the innovations 1,tu , 2,tu ,…, ,N tu : in our example, when 

, it must be that 1,2b , in which case none of the 
variables is simultaneously associated and the reduced-form VAR 
is practically isomorphic to the structural VAR, so that all standard 
shocks are also structural shocks. When the reduced-form shocks 
are instead highly correlated, as it is often the case, unfortunately, 
the ordering of the variables cannot be determined with statistical 
methods but has to be selected by the researcher. Therefore, as 
suggested by Sims (1981), it is often warmly suggested that a 
researcher tries different orderings of the variables to understand 
what are the implications to choose some restrictions instead of 
others in terms of the resulting estimates of the IRFs.  
Another important issue with IRFs is that they are constructed 
using the estimated coefficients. Given that each coefficient is 
estimated with uncertainty (due to a variety of factors, such as 
small sample sizes and measurement error), the IRFs will contain 
sampling error as well, i.e., they will be highly nonlinear 
transformations of the sample parameter estimates. Therefore, it is 
often advisable, after having computed and plotted the IRFs of 
interest, to also construct confidence intervals around them to 
account for the uncertainty that derives from parameter 
estimation. Although under some assumptions, confidence bands 
can be constructed relying on asymptotic theory that implies that 
OLS (equal to ML) parameter estimates are normally distributed, 
recently it has become common to use bootstrapping methods, 
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see the Mathematical and Statistical Appendix at the end of the 
book for a brief introduction. The bootstrap is based on resampling 
from either the distribution of parameter estimates obtained from 
the true, original data (parametric bootstrap), or directly from the 
data with replacement to obtain blocks of consecutive observations 
(nonparametric bootstrap); in both cases, the final goal is to 
generate a large number of alternative pseudo-samples then used 
to approximate the distribution of one or more sample statistics of 
interest—for instance, the IRFs of a VAR—computed across the 
pseudo-samples (see, for instance, Efron and Tibshirani, 1986). 
When applied to IRFs, bootstrapping techniques have two major 
advantages: first, they produce confidence intervals that are more 
reliable than those based on asymptotic theory (see Kilian, 1998); 
second, this methodology avoids the computation of exact 
expressions for the asymptotic variance of the IRF coefficients, 
which is otherwise rather complex (see Lütkepohl, 1991). The 
bootstrap method consists in the implementation of the following 
steps.  
 Each equation is estimated by OLS/MLE and the vector 

series { }b
tu  of T errors (with T equal to the original sample 

size) is constructed by randomly sampling with 
replacement from the estimated residuals. Random 
sampling with replacement from an initial dataset means 
that T observations are drawn, randomly from the original 
sample. After each drawn the observation is replaced in the 
sample, so that any observation can be drawn more than 
once. Importantly, when drawing the observations, one has 
to properly consider the fact that the error terms are 
correlated across the equations, which implies that 
horizontal blocks of N different structural residuals are 
jointly drawn. 

 The series { }b
tu  and the estimated coefficients are then 

used to construct a pseudo-vector of endogenous variable 
series, { }b

ty .  

 The coefficients used to generate { }b
ty  are discarded and 

new coefficients are estimated from { }b
ty . The impulse 

response functions are computed from the newly estimated 
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coefficients and saved, also indexed by the bootstrap 
iteration b. 

When this procedure is repeated a sufficiently large number of 
times, b = 1, 2, …, B, the resulting impulse response functions 
can be used to construct the confidence bands. As an example, a 
95% confidence interval is the one that excludes the highest 
and the lowest bootstrapped, re-sampled 5% observations: for 
each horizon h = 1, 2, …, H the lowest (highest) 2.5% IRFs are 
excluded, and the interval is set to contain the remaining 95% 
IRFs. An impulse response function is considered to be 
statistically significant if zero is not included in the 
bootstrapped confidence interval. 

 
Example 3.7.  We are now ready to return to Example 3.4. In case of a positive 

shock to the short end of the yield curve (a tightening of 
conventional monetary policy), what can we expect to happen to 
the rest of the curve, on average? Let us consider the VAR(2) model 
estimated in Example 3.4 and compute the IRFs to a one standard 
deviation positive shock (equal to approximately 21 bps) to the 1-
month yield. Figure 3.4 shows the responses of each of the 
variables in the system over 52 weeks, i.e., for h = 1, 2, …, 52. The 
dotted lines represent the 95% bootstrapped confidence intervals.  
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Figure 3.4 – IRFs to a one standard deviation positive shocks to 
the 1-month Treasury yield 
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Unsurprisingly, the response of the one-month yield to its own 
shock is positive and quite persistent. However, after 
approximately 18 weeks such an effect turns negative and 
statistically significant. Conversely, the other Treasury yields 
display weak or no effects: the responses of the five- and ten-year 
yields to the shock are never significant (as zero is always in the 
confidence interval, the null hypothesis that the IRF is equal to zero 
cannot be rejected). The 1-year yield is mildly positively affected 
by the shocks, but after two weeks the response turns negative 
(small, but significant). If one takes a one-month U.S. T-bills 
positive shock as indicative of a monetary policy tightening, the 
figure gives rather attenuated indications of policy transmission to 
longer-term riskless rates. 

3.2 Variance Decompositions 
In Section 2.6, we have discussed how a VAR model can be used in 
forecasting. However, irrespective of the actual accuracy of the 
predictions, understanding the properties of forecast errors is 
helpful in order to assess the interrelationships among the 
variables in the system. In (3.99), we have provided the formula to 
compute the forecast error for a VAR(1) model. It is possible to re-
formulate such an equation exploiting the VMA representation of 
the model, so that the h-step-ahead forecast error is  

1

0
( )

h

t t h t i t h it h
i

h E
−

+ + −+
=

 = − =  ∑u y Φ εy . (3.108) 

To help our understanding, we apply (3.109) to the bivariate VAR 
model that we have discussed in Section 3.1 and, focusing only on 
the series { }1,ty , we note that  

1, |1 1, 1,1 1, 1,1 1, 1 1,1 1, 1

1,2 2, 1,2 2, 1 1,2 2, 1

( ) (0) (1) ... ( 1)
(0) (1) ... ( 1)

t h ty t h t h t h t

t h t h t

yu h y E h
h

φ ε φ ε φ ε
φ ε φ ε φ ε

++ + + − +

+ + − +

 = − = + + + − 
+ + + + −

. (3.109) 
Consequently, if we denote by 2

1( )y hσ  the h-step-ahead variance of 

the forecast of 1,t hy + , we obtain: 
2 2 22 2 2 2 2 2

1 1 21,1 1,1 1,1 1,2 1,2 1,2( ) (0) (1) ... ( 1) (0) (1) ... ( 1)y y yh h hσ σ σφ φ φ φ φ φ   = ++ + + − + + + −   
. (3.110) 
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Interestingly, because all the coefficients 2
,j kφ  are non-negative as 

they are squared, the variance of the forecast error increases as the 
forecast horizon h increases.  
It is possible to decompose the h-step-ahead forecast error 
variance in (3.111) into the proportion due to each of the 
(structural) shocks. In particular, the proportion of the forecast 
error variance due to the shocks in the sequence { }1,tε  is 

2 2 2 2
1 1,1 1,1 1,1

2
1

(0) (1) ... ( 1)

( )
y

y

h
h

σ φ φ φ

σ

 + + + −  , (3.111) 

while the proportion of forecast error variance due to the shocks in 
the sequence { }2,tε  is  

2 2 2 2
2 1,2 1,2 1,2

2
1

(0) (1) ... ( 1)

( )
y

y

h
h

σ φ φ φ

σ

 + + + −  . (3.112) 

It is easy to see how this result can be generalized to a VAR 
including N variables instead of the two in our example. The 
computation of the proportion of the forecast error variance due to 
each shock is often referred to as forecast error variance 
decomposition. In practice, variance decompositions determine 
how much of the h-step-ahead forecast error variance of a given 
variable is explained by innovations to each explanatory variable 
for 1,2,...h = . For instance, in our bi-variate example, if the 2,tε  

shocks explain none of the forecast variance of 1,ty  at all forecast 

horizons, we would say that the series { }1,ty  is exogenous, that is, 

it evolves independently of the 2,tε  shocks and of the { }2,ty  

sequence. Conversely, if 2,tε  shocks explain all the forecast 

variance of { }1,ty  at all forecast horizons, then { }1,ty  is said to be 

completely endogenous. In most practical applications, it is 
common for 1,tε  (ε2,t ) to explain most of the forecast variance of 

1,ty  ( 2,ty ) at short-term horizons, while the importance of shocks 

to 2,ty  ( 1,ty ) on the forecast variance of 1,ty  ( 2,ty ) grows with 
the forecast horizon. 
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Importantly, like in IRF analysis, forecast error variance 
decompositions of reduced-form VARs require identification 
(because otherwise we would be unable to go from the coefficients 
in iΘ  to their counterparts in iΦ ), therefore, Choleski 
decompositions (or other restriction schemes) are typically 
imposed. As we shall recall from Section 3.1, in the bivariate model 
examined in this section, this means that all the one-period 
forecast error variance of 1,ty  is attributed to 1,tε . It is important 
to emphasize again that assuming a particular ordering is 
necessary to compute the impulse responses and variance 
decompositions from a VAR, although the restrictions underlying 
the ordering used may not be supported by the data because they 
may be decided by the researcher on an a-priori basis. As already 
discussed in the case of IRFs, when possible economic theory 
should give some guidance on what is a plausible ordering of the 
variables (i.e., to point out that when the movement in a variable is 
likely to temporally precede rather than follow the movements by 
the other variables this variable should be placed at the top of the 
ordering). Once more, however, the lower the pairwise cross-
correlations among the errors are, the weaker the impact of the 
ordering on the results. 
In conclusion, forecast error variance decomposition and impulse 
response function analyses both entail similar information from 
the time series under analysis and are often used in combination 
(such a combined approach is called innovation accounting) to 
uncover the dynamic interrelationships among the endogenous 
variables.  

Example 3.8.  We present the variance decompositions for the forecast error 
variance of the one-month, one-, five-, and ten-year Treasury yields 
from the VAR(2) estimated in Example 3.4 at forecast horizons 
between 1 and 12 weeks. In particular, panel (a) of Table 3.7 shows 
in which proportion the innovations to each variable in the system 
contribute to the forecast error variance of the one-month T-bill 
yield at different horizons. The variance decompositions of the 
one-year, five-year and ten-year Treasury yields can be found in 
panels (b), (c), and (d), respectively. 
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 Variance Decomposition of 1M Yield:
 Period S.E. 1M Yield 1Y Yield 5Y Yield 10Y Yield

 1  0.207  100.000  0.000  0.000  0.000
 2  0.275  99.897  0.061  0.039  0.003
 3  0.315  99.377  0.504  0.110  0.008
 4  0.340  98.241  1.544  0.199  0.016
 5  0.359  96.425  3.254  0.299  0.022
 6  0.373  93.943  5.625  0.405  0.027
 7  0.386  90.867  8.591  0.512  0.030
 8  0.398  87.309  12.045  0.615  0.031
 9  0.409  83.405  15.854  0.710  0.030

 10  0.421  79.300  19.879  0.793  0.029
 11  0.433  75.127  23.985  0.861  0.027
 12  0.445  70.998  28.060  0.915  0.028

Panel (a)  
 Variance Decomposition of 1Y Yield:
 Period S.E. 1M Yield 1Y Yield 5Y Yield 10Y Yield

 1  0.079  0.348  99.652  0.000  0.000
 2  0.126  0.784  99.110  0.092  0.015
 3  0.164  0.609  99.201  0.153  0.037
 4  0.197  0.425  99.325  0.188  0.063
 5  0.226  0.358  99.341  0.210  0.091
 6  0.254  0.406  99.244  0.228  0.122
 7  0.280  0.543  99.057  0.243  0.156
 8  0.304  0.741  98.806  0.258  0.195
 9  0.328  0.978  98.512  0.274  0.236

 10  0.351  1.237  98.191  0.291  0.282
 11  0.373  1.506  97.855  0.308  0.330
 12  0.394  1.778  97.513  0.328  0.382

Panel (b)  
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 Variance Decomposition of 5Y Yield:
 Period S.E. 1M Yield 1Y Yield 5Y Yield 10Y Yield

 1  0.106  0.261  53.622  46.117  0.000
 2  0.166  0.391  53.547  46.045  0.017
 3  0.212  0.341  53.959  45.674  0.026
 4  0.251  0.267  54.526  45.180  0.027
 5  0.284  0.209  55.120  44.646  0.025
 6  0.314  0.174  55.695  44.109  0.022
 7  0.341  0.158  56.235  43.588  0.019
 8  0.366  0.159  56.737  43.087  0.017
 9  0.390  0.173  57.200  42.612  0.015

 10  0.412  0.197  57.629  42.161  0.013
 11  0.433  0.227  58.026  41.735  0.012
 12  0.454  0.263  58.393  41.333  0.011

Panel (c)  
 Variance Decomposition of 10Y Yield:
 Period S.E. 1M Yield 1Y Yield 5Y Yield 10Y Yield

 1  0.101  0.260  37.242  51.653  10.845
 2  0.158  0.306  36.977  52.897  9.820
 3  0.202  0.285  37.053  53.316  9.345
 4  0.237  0.253  37.265  53.389  9.093
 5  0.268  0.221  37.527  53.311  8.941
 6  0.296  0.194  37.805  53.163  8.839
 7  0.321  0.170  38.086  52.981  8.763
 8  0.344  0.150  38.363  52.784  8.703
 9  0.365  0.134  38.633  52.580  8.653

 10  0.385  0.120  38.896  52.375  8.608
 11  0.404  0.109  39.151  52.171  8.568
 12  0.422  0.100  39.399  51.971  8.530

Panel (d)  

Table 3.7 – Forecast error variance decomposition of one-month, 
one-, five-, ten-year Treasury yields when the Choleski ordering is 

one-month, one-, five-, ten-year yields 
Notably, the forecast error variance of the one-month yield at a 
one-week horizon is entirely explained by its own innovations. By 
construction, this derives from the specific Choleski 
triangularization that entails placing the one-month yield on the 
top of the ordering. However, even at a forecast horizon of 12 
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weeks, the own innovations continue to contribute as much as 70% 
of the forecast variance of the one-month yield.  
Interestingly, the movements in the ten-year yield seem to explain 
little of the forecast error variance of the other riskless yield series 
and even of its own error variance. However, in order to 
understand why the ordering of the variable is often crucial, Table 
3.8 shows how the variance decomposition of the ten-year yield 
changes when the ten-year yield is placed at the top of the ordering 
in a different Choleski identification scheme. 
 Variance Decomposition of 10Y Yield
 Period S.E. 10Y Yield 1M Yield 1Y Yield 5Y Yield

 1  0.101  100.000  0.000  0.000  0.000
 2  0.158  99.939  0.003  0.001  0.057
 3  0.202  99.902  0.002  0.001  0.096
 4  0.237  99.879  0.004  0.001  0.116
 5  0.268  99.860  0.010  0.005  0.125
 6  0.296  99.840  0.020  0.010  0.130
 7  0.321  99.818  0.032  0.018  0.132
 8  0.344  99.794  0.047  0.027  0.132
 9  0.365  99.767  0.063  0.039  0.132

 10  0.385  99.738  0.079  0.051  0.132
 11  0.404  99.707  0.097  0.065  0.131
 12  0.422  99.676  0.115  0.080  0.130

 

Table 3.8 – Forecast error variance decomposition of the ten-year 
Treasury yields (ten-year yield on the top of the Choleski ordering) 
Under this new ordering, most of the forecast error variance at all 
the 12 horizons considered is explained by its own ten-year yield 
innovations. Indeed, the estimated correlation coefficients among 
the innovations of the variables in the VAR(2) are:  

. 
Interestingly, the correlation between the innovations to ten-year 
and the five-year yields is very close to one, while for a few 
additional pairs of reduced-form yield residuals display substantial 
correlations. As we have learned, when correlation coefficients 
between the innovation are high, the ordering that a researcher 
selects to achieve identification may be of crucial importance.  
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3.3 Granger Causality  
Another tool that is useful in order to investigate the dynamic 
relationships among the variables in a VAR system is Granger 
causality (see Granger, 1969a). Formally, the definition of Granger 
causality is as follows. 
 

Definition 3.5. (Granger Causality) Let tℑ  be the information set containing all 
the relevant information available up to and including time t. In 
addition, let ( )|t th ℑy  be the optimal (minimum MSFE) h-step-

ahead prediction of the process { }ty  at the forecast origin t, based 

on the information set tℑ . The vector time series process { }tx  is 

said to (Granger-) cause { }ty  in a Granger sense if and only 

if ( ) { }( )< ℑ ≤ℑ | \ ||yt yt t stMSE MSE h s th x . 
 

Alternatively, it is possible to define Granger causality using “its 
complement” (or lack thereof), i.e., { }tx  does not cause { }ty  in a 
Granger sense at horizon h, if taking into account present and past 
values of { }tx  does not improve the accuracy of the h-step ahead 

prediction of the future realizations of{ }ty . Finally, if and only if 

{ }tx  causes { }ty  and { }ty  causes { }tx , then the joint process 

{ }' , ' 't tx y  is said to represent a feedback system. 

Notably, because the information set tℑ  of all the existent relevant 
information is rarely available to the forecaster, the optimal 
prediction given tℑ  cannot be determined. Therefore, instead of 

considering the entire set tℑ , we only consider the information in 
the past and present values of the process under examination. In 
addition, instead of comparing optimal predictors, we compare the 
optimal linear predictors that we have discussed in Section 2.6. 
Therefore, we can re-write Definition 3.5 as follows. 
 

Definition 3.6.  (Granger Causality - Restricted) Let { }( )≤| , |t s sh s ty x y  be the 

optimal linear (minimum MSFE) h-step-ahead prediction function 
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of the process { }ty  at the forecast origin t, based on the 

information { }≤, |s s s tx y . The process { }tx  is said to Granger 

cause { }ty  if  

. 
 

Notably, Granger causality is different from exogeneity: indeed, for 
ty  to be exogenous it is required that it is not affected by the 

contemporaneous value of tx , while Granger causality refers to the 

effects of the past values of { }tx  on the current value of ty . 
In order to discuss the Granger causal relationship among the 
variables in a VAR system, let us go back to our bivariate example, 
and, in particular, to its VMA representation: 

1,1( ) 1,2( )1, 1,1

0 2,1( ) 2,2( )2, 2,2

θ θµ
θ θµ

∞
−

= −

     
= +      
     

∑ i it t i

i i it t i

y u
y u

. (3.113) 

It can be proven (see Lütkepohl, 2005), that  

{ }( ) { }( )1, 1, 2, 1, 1, 1,21| , | 1| |     ( ) 0t s s t sy y y s t y y s t iθ≤ = ≤ ⇔ =    

for 1,2,...i = . In addition, equality of the one-step-ahead predictors 
implies the equality of the h-step-ahead predictors, for 2,3,...h = . 
Therefore, the fact that 1,2( ) 0iθ = , for 1,2,...i =  provides a 

necessary and sufficient condition for 1,sy  not being caused 

by 2,ty  in a Granger sense. Therefore, the lack of Granger causality 
can be easily verified from the VMA representation of the model. In 
addition, it is worthwhile noting that for a stationary, stable 
VAR(p) process  

1,1(1) 1,2(1) 1,1( ) 1,2( ) 1,1, 1,0 1, 1 1,

2,1(1) 2,2(1) 2,1( ) 2,2( ) 2,2, 2,0 2, 1 2,

... −−

−−

            
= + + + +            

            

p p t pt t t

p p t pt t t

a a a a yy a y u
a a a a yy a y u

 (3.115) 
the condition in (3.115) is satisfied if and only if 1,2( ) 0ia =  for 
=1,  2,...,  i p . This implies that the lack of causality can be assessed 

simply by looking at the representation of the VAR in its standard 
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form. This means that in this context, the lack of Granger causality 
can be easily verified by performing a standard F-test (like the one 
discussed in Chapter 1) of the restriction 

1,2(1) 1,2(2) 1,2( )... 0pa a a= = = = . 
A multivariate generalization of Granger causality leads to block-
exogeneity tests (or block-causality tests, a slightly more precise 
definition) which are useful to check whether adding a variable 
into a VAR may increase the accuracy of the forecasts produced by 
the model. In other words, the test aims at verifying whether one 
variable, call it ,n ty , Granger causes any other variables in the 
system, that is, whether taking into account the lagged value of 

,n ty  helps forecasting any of the other variables in the VAR. 
From a practical point of view, block-causality tests simply consist 
of likelihood ratio tests like the one discussed in Section 2.5:  

( )( ) ln R U
u uT m− −Σ Σ    (3.116) 

where R
uΣ  is the covariance matrix of the residuals from a model 

that has been restricted to have all the coefficients of the lags of the 
variable ,n ty  set to zero and U

uΣ  is the residual covariance matrix 
of the unrestricted model. For instance, let us consider a tri-variate 
VAR(1) model 

1, 1,0 1, 1 1,1,1 1,2 1,3

2, 2,0 2, 1 2,2,1 2,2 2,3

3,1 3,2 3,33, 3,0 3, 1 3,

−

−

−

        
        = + +        
                

t t t

t t t

t t t
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y a y ua a a

a a ay a y u
. (3.117) 

Suppose that we want to test whether 3,ty  Granger causes either 

2,ty  or 1,ty . In practice, we need to test the restricted model 

1, 1,0 1, 1 1,1,1 1,2

2, 2,0 2, 1 2,2,1 2,2

3,1 3,2 3,33, 3,0 3, 1 3,

0
0

−

−

−

        
        = + +        
                

t t t

t t t

t t t

y a y ua a
y a y ua a

a a ay a y u
,(3.118) 

vs. the unrestricted model in (3.118) using a LR test. Failure to 
reject the null hypothesis that the restricted model is sufficient to 
fit the data (that is, if the calculated value of the statistic is less than 
the critical value of the 2χ  at a pre-specified size level) means that 

3,ty  Granger does not Granger causes any of the other two 



Applied Time Series Analysis for Finance 
 

variables in the system. Of course, additional tests may be 
implemented to separately test whether 3,ty  Granger causes 1,ty , 

2,ty , or both. 

Example 3.9.  To conclude the analysis of the VAR(2) model for the one-month, 
one-, five-, and ten-year Treasury yields that we have estimated in 
previous examples, we test Granger causality for all the variables in 
the model. In particular, Table 3.9 considers one dependent 
variable at a time and tests whether the lags of each of the other 
variables help to predict it. In other words, in this case, the chi-
square statistics refer to a test in which the null is that the lagged 
coefficients of the “excluded” variable are equal to zero (i.e., the 
“excluded” variable does not help to forecast the selected 
dependent variable).  

Dependent variable: 1M Yield

Excluded Chi-sq df Prob.

1Y Yield  102.054 2  0.000
5Y Yield  4.965 2  0.084

10Y Yield  1.309 2  0.520

All  180.123 6  0.000

Panel (a)

Dependent variable: 1Y Yield

Excluded Chi-sq df Prob.

1M Yield  33.950 2  0.000
5Y Yield  3.236 2  0.198

10Y Yield  2.714 2  0.257

All  43.161 6  0.000

Panel(b)
Dependent variable: 5Y Yield

Excluded Chi-sq df Prob.

1M Yield  5.630 2  0.060
1Y Yield  3.976 2  0.137

10Y Yield  1.238 2  0.539

All  7.535 6  0.274

Panel (c)

Dependent variable:10Y Yield

Excluded Chi-sq df Prob.

1M Yield  0.940 2  0.625
1Y Yield  1.638 2  0.441
5Y Yield  2.051 2  0.359

All  4.579 6  0.599

Panel (d)  

<INSERT TABLE 3.9 HERE> 
Table 3.9 – Granger causality tests 

Notably, the only lead-lag interactions that seem to be significant at 
conventional size levels are the following:  
 the one-year yield (and five-year yield, at 10% confidence 

level) Granger causes the 1-month yield; 
 the one-month yield Granger causes the one-year and the 

five-year yields. 
Therefore, there is a feedback effect (or two-way causality) 
between one-month and one-year Treasury yields; the five-year 
yield and the one-month yield form a feedback system using a p-
value of 0.10. 
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4- Vector Moving Average and Vector Autoregressive 
Moving Average Models 
4.1 Vector Moving Average Models 
Although less common in financial applications, a researcher could 
also specify a vector moving average (VMA) model, 

1 1 2 2 ...− − −= + + + + +t t t t q t qy μ u Θ u Θ u Θ u .  (3.119) 

where 1, 2, ,... 't t K tt y y y =  y , tu  is a zero-mean multivariate white 

noise with non-singular covariance matrix uΣ  and 

1 2 '... Kµ µ µ µ =    is the mean vector of ty . It is possible to verify 
that, exactly as a VAR has an infinite VMA representation, a VMA 
model potentially has an infinite-order VAR representation. For 
concreteness, let us consider a VMA(1) model with zero mean (i.e., 
=μ 0 ): 

1 1−= +t t ty u Θ u .  (3.120) 
It follows that  

1 1−= −t t tu y Θ u , (3.121) 
and thus  

1 1 1 2− − −= −t t tu y Θ u . (3.122) 
Therefore, we can rewrite (3.121) as  

( )1 1 1 2− −= + −t t t ty u Θ y Θ u .  (3.123) 
By iterative substitution we eventually show that  

( )1
1

∞

−
=

= − +−∑ i
t t i t

i
y y uΘ ,  (3.124) 

which is the infinite-order VAR representation of the process. Note 
that this is only potentially infinite, because it may be that 1( )i−Θ  
may be equal to zero for some i greater than some finite number p, 
so that the VAR representation may in fact turn out to be of finite 
order p. For this representation to be meaningful, 1

iΘ  must 
approach zero as i approaches to infinity, which requires that the 
eigenvalues of 1Θ  are less than one in modulus, that is: 

( ) ( )1 1det det 0( ) = ≠− − +K Kz zI Θ I Θ , for , | | 1z ≤ . (3.125) 

This is the same condition that we have discussed for the stability 
of a VAR(1) model. 
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In general, a VMA(q) process similar to the one in (3.120) with 
=μ 0  has a pure VAR representation, 

1

∞

−
=

= Π +∑t i t i t
i

y y ε ,  (3.126) 

if ( )1det 0... ≠+ + + q
K qz zI Θ Θ ,  for , | | 1z ≤ . Such a VMA(q) is 

said to be invertible. 

We can also examine the first and second moments of a VMA(q). As 
the multivariate white noise tε  has zero mean vector, the mean of 

ty  is simply the vector 1 2, ..., Nµ µ µ =  μ . For the sake of 
simplicity, in what follows we assume =μ 0 . The autocovariance 
matrices are then 

( )
0

( ) ' 'ε

−

− +
=

= =∑
q h

t t h i h i
i

h EΓ y y Θ Σ Θ , for 0,1,...,h q=  (3.127) 

and O for h q> . Clearly, (0)Γ  is simply the covariance matrix of 
the series. 
Unlikely VAR models, VMA processes can never be simply 
estimated equation by equation by OLS. One way to estimate them 
is the maximum likelihood approach, more precisely by a 
maximum conditional-likelihood (that assumes tu  to be equal to 

zero for 0t ≤ ) or alternatively by exact-likelihood (that treats tu  
for 0t ≤  as additional parameters of the model). However, a 
detailed review of these methods is out of the scope of this book. 
The interested Reader can find a treatment in Lütkepohl (2005). 

4.2 Vector Autoregressive Moving Average Models 
For the sake of completeness, we finally introduce vector 
autoregressive moving average (VARMA) processes, that are VAR 
models that are allowed to include finite order MA process. The 
general form of a VARMA(p,q) process with VAR order p and MA 
order q is 

0 1 1 1 1 2 2... ...− − − − −= + + + + + + + +t t p t p t t t q t qy a A y A y u Θ u Θ u Θ u ,   
where  is a white noise process with non-singular covariance 
matrix uΣ . 
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A little bit of algebraic manipulation may be worthy in order to 
better understand the nature of this process. Let us now define tυ  
such as 

1 1 2 2 ...− − −= + + + +t t t t q t qυ u Θ u Θ u Θ u .  (3.129) 
If we substitute (3.130) into (3.129), we obtain: 

0 1 1 ...− −= + + + +t t p t p ty yy a A A υ .  (3.130) 

If this process is stable, that is, if ( )1det 0... ≠+ + + p
K pz zI A A  for 

| | 1z ≤ , it is also stationary and can be re-written in its infinite VMA 
representation as 

0 0

∞ ∞

− −
= =

= + = +∑ ∑t i t i i t i
i i

y μ D υ μ Θ u , (3.131) 

that is, a pure VMA process where ( ) 1

1 0...K p

−
− − −= I A Aμ a . 

Again, to compute the autocovariance matrices of a VARMA model, 
we will assume that 0=μ  to simplify the algebra; then we post-
multiply (3.131) by 't h−y  and taking its expectation, we have 

[ ] [ ] [ ] [ ]1 1 1 1'' ' ... ' '− −− − − − − −= + + + + +  t p t ht t h t t h p t t h t t hE E E E Ey yy y A y y A u y Θ u y
  
given that [ ]1 '− =t sE u y O  for any s t< . Hence, for h q>  we can 
show that: 

1( ) ( 1) ... ( )= − + + −ph h h pΓ A Γ A Γ .  (3.133) 
If p q>  and (0),..., ( 1)−pΓ Γ  are known, the relationship in 
(3.134) can be used to compute the autocovariance matrices 
recursively from , 1,...h p p= +  .  
Noticeably, as for the VMA model, also a VARMA model cannot be 
simply estimated by OLS, but it requires maximum likelihood 
estimation. The interested Reader may find more details about the 
estimation of VARMA models in Lütkepohl (2005).  
 
References 

Akaike, H., Fitting autoregressive models for prediction. Annals of 
the Institute of Statistical Mathematics, 21, 243-247, 1969. 
Efron, B., and Tibshirani, R., Bootstrap methods for standard 
errors, confidence intervals, and other measures of statistical 
accuracy. Statistical Science, 1, 54-75, 1986. 



Applied Time Series Analysis for Finance 
 

Fuller, W. A., Introduction to Statistical Time Series, John Wiley, 
New York, 1976. 
Granger, C. W. J., Investigating causal relations by econometric 
models and cross-spectral methods, Econometrica, 37, 424-438, 
1969a. 
Granger, C. W. J., Prediction with a generalized cost of error 
function, Operations Research Quarterly, 20, 199-207, 1969b. 
Granger, C. W. J. and Newbold, P., Forecasting Economic Time Series, 
2nd edition, Academic Press, New York, 1986.  
Hoffman, D., L., and Schlagenhauf D., An econometric investigation 
of the monetary neutrality and rationality propositions from an 
international perspective. Review of Economics and Statistics, 64, 
562-571, 1982. 
Kheoh, T.S. & McLeod, A.I., Comparison of two modified 
portmanteau tests for model adequacy, Computational Statistics 
and Data Analysis, 14, 99-106, 1992. 
Kilian, L., Small-sample confidence intervals for impulse response 
functions, Review of Economics and Statistics, 80, 218-230, 1998. 
Li, W.K., Diagnostic Checks in Time Series, New York: Chapman and 
Hall/CRC, 2004. 
Ljung, G. M. and Box, G. E. P, On a measure of lack of fit in time 
series models. Biometrika, 65, 297-303, 1978. 
Hosking, J. R. M., The multivariate portmanteau statistic, Journal of 
the American Statistical Association, 75, 602-608, 1980. 
Hosking, J. R. M., Equivalent forms of the multivariate portmanteau 
statistic, Journal of the Royal Statistical Society, B43, 261–262, 
1981a. 
Li, W. K. and McLeod, A. I., Distribution of the residual 
autocorrelations in multivariate ARMA time series models, Journal 
of the Royal Statistical Society, B43, 231-239, 1981. 
Lütkepohl, H., Introduction to Multiple Time Series Analysis. 
Springer, Berlin, 1991. 
Lütkepohl, H., New Introduction to Multiple Time Series Analysis. 
Springer, Berlin, 2005. 
Sims, C. A., Macroeconomics and reality, Econometrica, 48:1–48, 
1980. 



3.Vector Autoregressive Moving Average (VARMA) Models 

65 

Sims, C. A., An autoregressive index model for the U.S. 1948-1975, 
in J. Kmenta & J. B. Ramsey (Editions), Large-Scale Macro-
Econometric Models, North-Holland, Amsterdam, pp. 283–327, 
1981. 
Reinsel, G. C., Elements of Multivariate Time Series Analysis, 
Springer, New York, 1993. 
Zellner, A., An efficient method of estimating seemingly unrelated 
regressions and tests of aggregation bias, Journal of the American 
Statistical Association 57: 348–368, 1962. 


	1- Foundations of Multivariate Time Series Analysis
	1.1 Weak Stationarity of Multivariate Time Series
	1.2 Cross-Covariance and Cross-Correlation Matrices
	1.3 Sample Cross-Covariance and Cross-Correlation Matrices
	1.4 Multivariate Portmanteau Tests
	1.5 Multivariate White Noise Process

	2- Introduction to VAR Analysis
	2.1 From Structural to Reduced-Form VARs
	2.2 Stationarity Conditions and the Population Moments of a VAR(1) Process
	2.3 Generalization to a VAR(p) Model
	2.4 Estimation of a VAR(p) Model
	2.5 Specification of a VAR Model and Hypothesis Testing
	2.6 Forecasting with a VAR model

	3- Structural Analysis with VAR Models
	3.1 Impulse Response Functions
	3.2 Variance Decompositions
	3.3 Granger Causality

	4- Vector Moving Average and Vector Autoregressive Moving Average Models
	4.1 Vector Moving Average Models


