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3. Vector Autoregressive Moving Average
(VARMA) Models

“In every action, we must look
beyond the action at our past,
present and future state, and at
others whom it affects, and see
the relations of all these
things.”

(Blaise Pascal, The Thoughts of
Blaise Pascal)

In Chapter 2, we have focused our attention on univariate time
series models. However, because markets and institutions are
highly intercorrelated, in financial applications we often need to
jointly model a number of different time series to study the
dynamic relationship among them. Therefore, in this chapter, we
introduce econometric models for multivariate time series
analysis. Loosely speaking, instead of focusing on the time series
realization of a single variable, as we did in Chapter 2, now we
consider a set of variables (e.g., the log-returns of N assets or the
yields of Treasury bonds for N different maturity buckets),

y, =[y1‘[,y2't,...,y]v‘[]' with £=1, 2, ..,7 where T is the number

of observations in the series. The resulting sequence is called a N-
dimensional (discrete) vector stochastic process.

In particular, we devote most of our attention to the vector
autoregressive (VAR) models popularized by Sims (1980) that
have come to be commonly used in financial applications. These
are very flexible models where a researcher needs to know very
little ex-ante theoretical information about the relationship among
the variables to guide the specification of the model and all
variables are treated as a-priori endogenous. In fact, as we shall see
throughout this chapter, a VAR allows each variable to depend not
only on its own lags (and/or combinations of white noise terms)
but also on the lags of the other variables in the model.

In the rest of the chapter, we proceed as follows. First, we
generalize the concepts of (weak) stationarity to the case of N-
dimensional vector time series and discuss how to compute the
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first two moments of the resulting multivariate distribution.
Second, we introduce VAR models in their structural and reduced
forms and their applications, including impulse response function
analysis and variance decomposition. Third, we introduce the
concept of Granger causality and show how to test for it. Finally,
we briefly introduce vector moving average (VMA) and vector
autoregressive moving average (VARMA) models. In this chapter,
we focus as much as possible on the intuition and on the
applications and as little as possible on the algebra and related
technicalities. Of course, these remain important to any rigorous
approach: an in-depth review of the statistical theory underlying
multivariate time series analysis can be found in Liitkepohl (2005)
and Reinsel (1993).

1- Foundations of Multivariate Time Series Analysis
1.1 Weak Stationarity of Multivariate Time Series

In Chapter 2, we have introduced the concept of stationarity of a
time series as a necessary condition to be able to use past
observations of a variable to forecast its future realizations. In
particular, we said that a time series is (strictly) stationary if its
statistical properties do not change over time and that it is weakly
stationary if its first two moments are time invariant. These
definitions still apply when we generalize them to multivariate
time series.

Definition 3.1. (Weak Stationarity) Consider a N-dimensional time series
y[=[y1't,y21t,...,yN't]'. Formally, this is said to be weakly

stationary if its first two unconditional moments are finite and
constant through time, i.e.,

= E[yt]zp,<oo forall ¢;
. E[(yt—p)(yt—p)']zro<oo forall ¢;

- E[(Yt —H)(YH, —u)'] =TI, forall tand h.
where the expectations are taken element-by-element over the

joint distribution of ¥, . In particular, p is the vector of the means,

o= [y, 1y, .-, 1ty)’, and Fo is the NV x N covariance matrix where
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the ith diagonal element is the variance of )/,, and the (i, j)th

element is the covariance between Vit and Vi Finally, T , is the

cross-covariance matrix at lag h.

Of course, the definition of weak stationarity provided above is
completely analogous to the one discussed in Chapter 2 (as it is a
corresponding definition of strict stationarity that is omitted here
to save space), but it requires the computation of cross-covariance
and cross-correlation matrices, that we shall discuss in Section 1.2.

1.2 Cross-Covariance and Cross-Correlation Matrices

While a Reader should be familiar with the computation of the
covariance matrix at lag zero, we provide a primer on how to get

the correlation matrix (at lag zero) from the covariance matrix FO.

Let D be a N xN diagonal matrix collecting (on its main
diagonal) the standard deviations of Vi for 7=1,...N. The
concurrent (i.e., at lag zero), correlation matrix of ¥, is defined as
p,=D'T D", (3.1)
where the (i j)th element of p, is the correlation coefficient
between y, and y,, attimet:
Covly,, .y, 1
i,to-j,t .

Because p; 0)= p/.J.(O) , —1< P, < 1,and p,,=1 for 1</ and

p,;(0)= (3.2)

J<N, p, is a symmetric matrix with unit diagonal elements.

We are now interested in computing the cross-covariance and
cross-correlation matrices at lags different from 0. More

specifically, the lag-h cross-covariance matrix of y, is defined as:
r,=£[(y, -1)y., 1)) (3:3)
where p is the mean vector of y . Therefore, the (i, j)th element of

r

for a weakly stationary time series, the cross-covariance matrix is

S the covariance between y . and J .. ,.From Definition 3.1,
it jt—h
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time-invariant, i.e., it only depends on the lag length h and not on
the temporal index t.
The lag-h cross-correlation matrix is defined as

p,=D"T D", (3.4)
where, as before, D is the diagonal matrix of standard deviations of
the individual series y,,. Therefore, the (i j)th element of p, is

the correlation coefficient between y ., and Viint

Covly,,.¥,,]
p,, () =———=, (35)

Gi,taj,t

Interestingly, when /A>0, the correlation coefficient pl.’/.(]?)
measures the linear dependence of y,, on y, ,. Similarly,
P,-,,-(b) measures the linear dependence of y,, on y, _,.Finally,
the diagonal element p, (/1) is simply the lag-h autocorrelation
coefficient of y,, . Notably, one has to recognize that
,0/,’1,(12)7& pl,’/(b) for any 7#/, as these coefficients measure

different linear relationships. Therefore, Fh and P, do not need to

be symmetric. In summary, the cross-correlation matrices of a
weakly stationary vector time series summarize in a compact and
easy-to-use way, the following information:

= if pI.J.(O)#O, Y., and Y, are contemporaneously linearly
correlated,

= if pi'j(h)zp].,i(/z)zo for all 4£20, then y,, and y,,
share no linear relationship;

= if ,01.'/.(}1):0 and pj.’l.(h)=0 for all #>0, then y, and

Y ;. are said to be linearly uncoupled;

= if ,01.’].(/1) =0 forall >0, but ,Oj.,l.(q) #0 for at least some
g >0, then there is a unidirectional (linear) relationship

between y_ . and Vi where y, . does not depend on

Y, but ¥, depends on (some) lagged values of y, ;
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= if pl.lj(b) #0 for at least some 1>0, and pj,/(‘Z) #0 for at
least some g >0 then there is a linear feedback relationship
between y,, and Ve

The concepts of unidirectional vs. feedback linear relationships
among variables will be further developed in the so-called
Granger-Sims causality tests (see Chapter 3.3)

1.3 Sample Cross-Covariance and Cross-Correlation Matrices

Now that we have discussed what cross-covariance and cross-
correlation matrices are, we are ready to discuss how they can be
computed in practice from the data. In fact, as we already know
from Chapter 2, we only observe empirical realizations of a time
series and thus we can only compute sample cross-covariances
and cross-correlations, which (under some conditions) will
provide consistent but biased estimates of their true, unobserved
counterparts (see Fuller, 1976, for a technical discussion of the
asymptotic properties of sample cross-covariances and cross-
correlations).

Given a sample {yt |t = 1,...,T}, the cross-covariance matrix can be

estimated by

T
% Zh: (v, ~¥)(y., ~¥)with 220, (3.6)
t=h+1

where y is the vector of sample means, i.e.,V:[yl,ﬁz,...,fN]'

I =

T

and y, = T"lzy” with 7=1,..,N. The cross-correlation matrix
t=1

can be then estimated as

p, =D'T' D", with £>0, (3.7)

where D is the NxN diagonal matrix of the sample standard
deviations of each of the component series.

Example 3.1. Consider the weekly yields of US one-month Treasury bills and ten-
year Treasury bonds, for the sample January 1990 - December
2016, as plotted in Figure 3.1.
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Figure 3.1 -Plot of weekly yields for one-month and ten-year U.S.
Treasury bond

These yields form a bivariate time series y, :[y”,y”]', where

Y, is the one-month Treasury bill yield and y,, is the ten-year

yield. First, we compute the vector of sample means of the series
and the contemporaneous correlation matrix, which are reported
in Table 3.1. All the values reported in Table 3.1, with the
exceptions of the correlation coefficient (which is by construction
pure numbers, i.e., without a scale), are percentages (e.g., 3.04
should be read as 3.04%). It is easy to see that the two series have

a high contemporaneous correlation coefficient, p, ,(0)=0.87 and

thus they are concurrently linearly correlated. However, cross-
correlations at different lags can give us additional useful

information about the dynamic relationship between the series.
Standard

Mean L. Skewness Kurtosis Minimum Maximum

Deviation
One-month Treasury yield 3.04 2,51 0.18 1.75 -0.05 8.89
Ten-year Treasury yield 4.74 1.89 0.14 2.15 1.38 9.02

(b) Correlation Matrix

One-month Treasury yield Ten-year Treasury yield

One-month Treasury yield 1
Ten-year Treasury yield 0.87 1

Table 3.1 - Descriptive statistics of the one-month and ten-year
U.S. Treasury yield series
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Table 3.2 shows the cross-correlations between the series. In
particular, the first set of bins (in the first column) shows the
correlations between the one-month Treasury yield and the lagged
values of ten-year Treasury yields (for increasing lags, h). The set
of bins in the second column shows the correlation between the
one-month Treasury yield and the leading values of the ten-year
Treasury yield, which are equivalent (because of the definition of
stationarity) to the correlation between ten-year Treasury yields
and lagged values of one-month bill yields (for increasing lags, h).
According to the definition given above, the two series display a

strong feedback relationship, as both ,01.‘].(/7)¢0and p].’i(q)iO
hold.

One-month yield,ten-year yield(-h) One-month yield,ten-year yield(+h)

=

lag lead

0.8681 0.8681
0.8672 0.8657
0.8663 0.8631
0.8653 0.8606
0.8641 0.8581
0.8627 0.8556
0.8610 0.8530
0.8590 0.8504
0.8567 0.8476
0.8537 0.8447
0.8505 0.8416
0.8474 0.8387
0.8442 0.8360
0.8411 0.8333
0.8377 0.8304
0.8342 0.8275
0.8307 0.8242
0.8272 0.8211
0.8232 0.8182
0.8191 0.8156
0.8150 0.8131
0.8109 0.8104
0.8072 0.8075
0.8035 0.8047
0.7999 0.8019
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Table 3.2 - Sample cross-correlations between one-month and ten-
year Treasury yields

1.4 Multivariate Portmanteau Tests

In Chapter 2, we have introduced the Ljung and Box’s (1978) Q-
statistic to jointly test whether several (m) consecutive
autocorrelation coefficients were equal to zero. As far as
multivariate time series are concerned, we are interested in testing
whether there are both no auto- and cross-correlations in a vector

series Y. . A simple, multivariate version of the Ljung-Box statistic
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to test, the null hypothesis H, :p, =..=p_=0 versus the

alternative hypothesis H :p. #0 for some 7 e {1,...,m} is

m 1 N A A
Q(m)= TZ;—tT_ > r(F,E00, 5, (3.8)

where T is the sample size, N is the dimension of y _, m is the

maximum lag length that we wish to test and ¢r(A) is the trace of

some matrix A, simply defined as the sum of the diagonal
elements of A. Under the null hypothesis, Q(m) is asymptotically

distributed as a y° distribution with N°m degrees of freedom.

For practical purposes, it is important to note that the z°

approximation to the distribution of the test statistic may be
misleading for small values of m. In addition, not knowing the small
sample distribution is clearly a shortcoming, because infinite
samples are not available. Using Monte Carlo techniques, it was
found that in small samples the nominal size of the portmanteau
test tends to be lower than the significance level chosen (see, e.g.,
Hosking, 1980). Moreover, the test has low power against many
alternatives.

To overcome this drawback, both Hosking (1980, 1981) and Li and
McLeod (1981) have proposed adjusted versions of the
multivariate Ljung-Box statistic that, despite being asymptotically
equivalent to the original one, have better finite sample
performance. The test statistic proposed by Hosking (1980) has
the expression

S

Q*(m)=T(T +2)i%tr(f“hf“olf“b 1), (3.9

while the test statistic proposed by Li and McLeod (1981) is
instead

N’m(m+1)
2r

Both Li and McLeod (1981) and Hosking (1981) provided
simulation experiments to demonstrate the improvement of their
suggested modified portmanteau test with respect to the original
multivariate version of Ljung-Box statistic. Li (2004) has noted that
a comparison of these two modified tests with the original one
shows that both modifications work equally well and were better

Q**(m):be;_tTf r(f,FF, B0 )+
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than the original multivariate portmanteau test. Kheoh and
McLeod (1992) have suggested that the variance of the Li-McLeod
modified portmanteau test is less than (3.8).

1.5 Multivariate White Noise Process

Before we move on to the introduction of vector autoregressive
models, we introduce the concept of multivariate white noise,
which will be useful in the rest of the chapter to define a few
classes of multivariate models.

(Multivariate White Noise) Let z, = [Zl,p Zz,t:---ZN,t] be a
N x1 vector of random variables. This multivariate time series is
said to be a multivariate white noise if it is a stationary vector

with zero mean, and if the values of zZ, at different times are

uncorrelated, i.e, I, isan NV x /N matrix of zeros at all h+#0.

Definition 3.2 implies that each component of z_ simply behaves

like a univariate white noise; additionally, the individual white
noises are uncoupled in a linear sense. It is important to

understand that the assumption that the values of z  are

uncorrelated does not necessarily imply that they are independent
(while we know that independence implies zero correlation, see
the Mathematical and Statistical Appendix at the end of the book).
However, independence can be inferred by the lack of correlations

at all leads and lags among the random variables that enter z ,

when the random vector follows a multivariate normal
distribution.

2- Introduction to VAR Analysis
2.1 From Structural to Reduced-Form VARs

Vector autoregressive (VAR) models are a natural generalization
of the univariate AR model already discussed in Chapter 2. In
practice, a VAR is a system regression model that treats all the
variables as endogenous and allows each of them to depend on p
lagged values of itself and of all the other variables in the system.
Formally, a VAR(p) model can be defined as follows.
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Definition 3.3. (Vector Autoregressive Model) A Vector Autoregressive model
of order p (in short VAR(p)) is a process that can be represented as

D
y,=a,+Ay, +A2yt72+...+ApyH7 +u, =aO+ZAI.yH +u,,
j=1

where y, isa N x1 vector containing N endogenous variables, a
is a Nx1 vector of constants, Al'AZ""’Ap are the p NxN

matrices of autoregressive coefficients, and u, isa N x1 vector of

uncorrelated, white noise disturbances.

In order to help the Reader familiarize with the concepts, we start
our discussion introducing a bivariate VAR(1) model, while in
Section 2.3 we generalize it to a VAR(p) model with N endogenous
variables (hence, equations). Consider the following bivariate, first-
order Markovian system

yl,t = bl,O _bl,ZyZ,t + wl,lyl,t—l + (/)1,2y2,r—1 + gl,t (312)
Ve =0y =Dy Vi + @ Vi ¥ 00+ 6y, (313)

where both the variables y, ., and p,, are assumed to be

stationary and the structural error terms &, and ¢, are
uncorrelated white-noise disturbances with standard deviation o,

and o,, respectively. The system in (3.12) - (3.13) can also be
rewritten in a more compact form using matrix notation:

{ 1 b12:|{ it :| _ |:b10 i| N {(01,1 2% :|{ yl,t—1:|+ {51; } (3.14)
b2,1 1| Yau bz,o D1 Pop || Yora &t

By, =Q,+Qy, , +¢&,, (3.15)

or,

where

1 b, ylt:| {b].0:| {(011 ¢12}
B= ", Y, = T, Q = L Q = ' e
|:b2,l 1 } t L’z,t ’ b, ' Po1 Pap
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In this system, that is also known as a structural VAR (or VAR in
primitive form), y, , depends on its own lag and on one lag of

Y, ,»butalso on the current value of y, ; similarly, y, depends
on its own lag and on one lag of y, ,, but also on the current value
of y,,. Therefore, a VAR in its structural form captures

contemporaneous feedback effects: -5, measures the

contemporaneous effect of a unit change of y,, on y,,6 and -b,,

measures the contemporaneous effect of a unit change of y,, on

Yo

Unfortunately, structural VARs are not very practical for applied
purposes because standard estimation techniques require the
regressors to be uncorrelated with the error terms, which is clearly
not the case of the VAR in its structural form. This is due to the
presence of contemporaneous feedback effects: obviously, each
contemporaneous variable is correlated with its own error term.
From (3.12) and (3.13), it is clear that from the first equation,

when —bL2 is non-zero, y, depends on y,, from the second
equation and therefore on ¢, , and it will be correlated with it;
from the second equation, when —bz_1 is non-zero, y,, depends on

Y, , from the first equation and therefore on ¢ ,. As an additional

drawback of the structural model, contemporaneous terms cannot
be used in forecasting, i.e., exactly where VAR models tend to be
largely popular. As a result, in time series analysis, it is common to
manipulate the VAR in its structural form to make it more directly

useful. Pre-multiplying both sides of (3.15) by B~ we obtain
y,=a,+Ay, +u,, (3.16)

where a = BleO, A =B7Q, and u, =B;1S[. Denoting by a, , the
element in row i of the vector a,, by a . the element in row i and
column j of the matrix A, , and by u,, the element in row i of the

vector u,, we can rewrite (3.16) in the equivalent form:

yl,t :al,O +a1,1y1,t—1 +a1,2y2,t—1 +u1,t (317)

11
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yZ,t = aZ,O +aZ,1y1,t71 + aZ,Z-VZ,tfl + uZ,t ) (318)
This system is called reduced-form VAR or, alternatively, it is said
to describe a VAR in its standard form. The model in (3.16) only
features lagged endogenous variables (i.e., it does not contain
contemporaneous feedback terms) and it can be estimated
equation by equation using OLS (as we shall see in detail in Section

2.4). Clearly, the new, reduced-form error terms, u, . and 4, ,
are composites of the two original (also called pure or structural)

shocks ¢ , and ¢, ,. This is easy to see if we solve u, = Bflst to get:

& —-b ¢

1t P12%0
u, =—r—— (3.19)
1 _bl,ZbZ,l
e —b ¢
u,, —_at 2l Lt (3.20)
1 _b1,2b2,1

Recalling that ¢, . and ¢,, are white noise processes, we can easily

derive the properties of the reduced form errors , , and u, . First,
taking the expected value of (3.19) and (3.20) (and recalling that,
based on the definition of a white noise, E[gl‘[] =0 and

E[szlt ] =0), we obtain that

I
Elu,, |=E| 2 —1220 =0 (3.21)
L 1_[)1,2172,1 |
(e —b & |
E[u ]:E “at BT |, (3.22)
* 1- b1,2b2,1

In addition, because &, and g,, are uncorrelated, i.e.,

Cov[eu i ] =0, we find that the variance of u,, is

Var[g -b & }_Var[gl'[}+bf'zVar[ng—2b1’260v[gl't,gz't]

Val‘ u — 1t 1,272,
L] (1-b,5,,) (1-b,b,,)
_o, b0,
(1 - bl,ZbZ,l )2

(3.23)
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and, similarly,

V: _ O-j,z + bzz,lo-gz,l 24

ar\u,, |=———. (3.24)
(1 - b1,2b2,1 )

It is easy to see that the variances of u,, and u,, are constant over

time. Finally, the covariance between the two structural errors is
equal to
COVI:U u i|: E|:(gl,t _bl,zgz,t )(gz,t _bz,lgl,t ):| _ _(b2_1o-gz_1 +b1,20-52,2)
1,6772,¢ 2 2
(1 - b1,2b2,1) (1 - b1,2b2,1)
(3.25)
Noticeably, while the reduced-form error terms remain serially
uncorrelated (i.e., autocorrelations are equal to zero) as the
structural errors were, they are cross-correlated unless

b, ,=b,, =0 (ie, there are no contemporaneous effects of y, , on
Y,, and vice versa). The variances and covariances of the
reduced-form errors can be collected in the matrix X :
~ Var[u, |  Cov[uy,,u,, ot o,
“UlCov[u U, ] Var[u, ] | |o, of

The reduced form VAR in (3.17)-(3.18) is very practical and easy to
estimate (this can be done by simple OLS), but it is important to
understand that, in general, it is not possible to identify the
structural parameters and errors (i.e., the sample estimates of the
coefficients and the residuals of the primitive system) from the OLS
estimates of the parameters and the residuals of the standard form
VAR. This lack of identification (because the model is linear, the
problem is both local and global, see Chapter 8 for a differentiation
of the two concepts) may be overcome if one is prepared to impose
appropriate restrictions on the primitive system. This is
unsurprising: the structural VAR in (3.12)-(3.13) contains eight
coefficients and two variances of the error terms, for a total of ten
parameters; the VAR in its standard form only contains nine
parameters (six coefficients, two variances and one covariance of
the error terms). Therefore, and this occurs for a rather intuitive
accounting, back-of-the-envelope reason, it is not possible to
recover all the information that was present in the primitive
system unless we are able to restrict one of its parameters. To this

13
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purpose, a popular identification scheme is the one proposed by
Sims (1980), based on a recursive Choleski triangularization.
Suppose that you are willing to impose a restriction on the

primitive system in (3.12)-(3.13) such that bl,2 is equal to zero,
meaning that y, , has a contemporaneous effecton y,, , but y,,

only affects y,, with a one period lag:
yl,t - bl.o + ¢1,1y1,t—1 + ¢1,2y2,t71 + 81,[ (3-27)

Vo=l =0 V1 4 0V P o+ 8y, (3:28)
This corresponds to imposing a Choleski decomposition on the
covariance matrix of the residuals of the VAR in its standard form.
Indeed, now we can re-write the relationship between the pure
shocks (from the structural VAR) and the regression residuals as

u,=¢, (3.29)
u, =¢,, —b, ¢ (3.30)

;t 21%1,t "

Practically, imposing the restriction b,,=0 means that B is

- 1 0
“|-b, 1’

and thus, pre-multiplication of the primitive system (3.12)-(3.13)

given by

by the lower diagonal matrix B~ yields

[ Vit } B { 1 0} [ byo } { 1 0} |:§01,1 (2%, “i Yita } { 1 0} |:81,t }
= + +
Yau _bZ,l 1 bz,o _bz,l 1| 01 @y || Yora _b2,l 1] &

which results in

|: Y1t :| _ |: b1,o :| + |: 1 O:||: (Z3 %% :|[ Yiia i| +|: St i|
Yau b, o —byobss 0,0 100000 000 || Vora & — 0,18,

: (3.32)
The system has now only nine parameters that can be identified
using the OLS estimates from (3.17)-(3.18). Indeed, using simple

algebra we can see that:a =b1‘0; a,, :bz,o _bl,ObZ,l;

A =P, =08, =P~ b2,1(/)1,1 38y, =Py~ b2,1(”1,2 . In



3.Vector Autoregressive Moving Average (VARMA) Models

addition, since we know from (3.29)-(3.30) that u,, =¢ , and

u,, =&,, _b2,181,t , We can compute:
2 _ _ 2
o =Var [uljt] =0, (3.33)
0f = Var|uy,] = 02, + 3,02, (3.34)
_ 2
C'OV[LIM,LIZI ] =-b,,0.,. (3.35)

The implication of the identification restriction that we just
imposed is that, while both the &, and &, shocks affect the

contemporaneous value of y,,, only &, 6 impacts the

contemporaneous value of y, . In practice, the observed values of

u,, are completely attributed to pure (structural) shocks to y, .

This technique of decomposing the residuals in a triangular fashion
is indeed called Choleski decomposition (or triangularization). Put
in other words, we see that the covariance matrix of the residuals
is forced to be equal to

X, = WIW =x'3(x"?)’, (3.36)

where W=B™", X is the diagonal covariance matrix of the

. . 12 . .
structural innovations, and X“?is the triangular “square root” of

the covariance matrix X .Equation (3.36) is easily checked:

r

5 :[ 1 0] g 0 [ 1 0]
b —b,y 1] 0 0’5212 —b,; 1
:[ 1 0] gz, 0 [1 —bu]
by Ul o 62|l 1
0'52,1 *bz,lo'sz,l

2 2 2
—by 08, 0, + Dy 08,

,(3.37)

which is exactly what we found in equations (3.33)-(3.35). The
decomposition in (3.36) is what we call the Choleski

decomposition of the symmetric matrix Z . Needless to say, the

task that one usually wants to accomplish is to go back from the

estimated X to the original (and unobserved) diagonal matrix X.

With a little bit of algebra, we understand that this is equivalent to
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=W (W)™ (3.38)
This technique can be generalized to a VAR system with any
number N of equations. In particular, in a N-variate VAR, exact

identification requires us to impose (N?—-N)/2 restrictions in

order to retrieve the N structural shocks from the residual of the
OLS estimate. Being based on a triangular structure, a Choleski

decomposition forces exactly (N> —N) /2 values of the matrix B

to be zero (or to some other constant).

Let us pause for a moment to understand the meaning (and the
implications) of the Choleski decomposition for a less simplistic
model, for instance a VAR(1) with three endogenous variables (and
therefore three equations). The parameters in the structural model
consist of three intercept terms, six (two for each equation)
coefficients that map the contemporaneous effect of each variable
on the other two, nine autoregressive coefficients (contained in a
3x3 matrix) and the three variance coefficients of the error terms,
for a total of 21 parameters. The VAR in its reduced form contains
12 estimated coefficients (three intercepts and nine autoregressive
coefficients), three variances and three covariances, for a total of
18 coefficients. Therefore, we shall need to impose three
restrictions to identify the parameters of the primitive system from
the OLS estimates of the VAR in its standard form, which is exactly

(3°-3)/2=3 restrictions. Indeed, imposing a triangular

(Choleski) decomposition on the structural residuals is equivalent
to pre-multiplying the structural VAR by the lower triangular
matrix

1 0 0
Bl = —by 4 10
byabsy —bzy 1 1 )

(3.39)

which yields the reduced form residuals:

1 0 Ofree
ut = B_lsf = _bz,l 1 0 |:82,f“ =
by1b3; —bsy 1|l%s¢

&1t
- Ear — bz,l 1

El,t(bz,lbg,z - bB,l) — by 6 + &3, (3.39)
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Because the Choleski decomposition is based on pre-multiplying by
a (lower) triangular matrix, it follows that when we decide the
ordering of the variables in a VAR system, we are also deciding
which kind of restrictions the decomposition will impose on the
contemporaneous effects of each variable on the others. For
example, in the tri-variate case of (3.39) above, b, 5, b; 3, and b, 3
are set to zero, meaning that the first variable in the system is
forced not to be contemporaneously affected by shocks to any of
the other variables; the second variable in the system is only
contemporaneously affected by shocks to the first variable; the last
variable is contemporaneously affected by the shocks to both the
other variables. It is easy to generalize this reasoning to the N-
variable case.

It should be evident that there are as many Choleski
decompositions as all the possible orderings of the variables, which
are therefore a combinatorial factor of N. Therefore, we shall need
to be aware that any time that we apply a Choleski triangular
identification scheme to a VAR model that results in a specific
ordering, we will be introducing a number of (potentially
arbitrary) assumptions on the contemporaneous relationships
among the variables. Therefore, despite being very practical,
Choleski decompositions are quite deliberate in the restrictions
that they place and tend not to be based on any theoretical
assumptions regarding the nature of the economic relationships
among the variables. Alternative identification schemes are
possible (although they are more popular in the macroeconomics
literature than in applied finance). A review of some commonly
used restriction schemes to achieve identification based on a
theoretical background can be found in Liitkepohl (2005, Chapter
9).

2.2 Stationarity Conditions and the Population Moments of a VAR(1)

Process

Let us now discuss the properties of a reduced-form, standard
VAR(1) model such as the one in (3.16). Assume that y , a,, y ,
and u, are N x 1 vectors and A, isa N x/N matrix and that the
process is weakly stationary, according to Definition 3.1. By taking

the expectation of y, and using the fact that E[ut} =0, we obtain:

17
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Ely |=a,+AEly,, | (3.40)
Because we are assuming stationarity, E[yt] is time-invariant so

that E[yt] = E[yH] and thus

-1

n=Ely,|=(1,-4,) a, (3.41)
provided that the matrix I, —A, is non-singular, where I is
the NV x NV identity matrix. Clearly, the unconditional mean vector

K in (3.42) must be contrasted with the conditional mean vector:
W, =Ely, 13, |=Ely.ly..]=a,+Ay, (342)
Therefore, using a = (IN —A1 )u, the VAR(1) model can be
rewritten as
y,~h=A(y,_, —W+u,. (3.43)
If we let y =y -u be the mean-corrected time-series, or

equivalently the vector process expressed in deviations from its
unconditional mean, we can write the model as:

y,=Ay_ tu. (3.44)

Clearly, it is possible to substitute y =AYy ,+u_ in the
expression (3.45), obtaining

y,=A (Alyt , U, 1)+u =Aly ,+Au,_ +u,.(3.45)

We can now substitute y, ,=Ay, ,+u, , in the expression

(3.46), and then keep iterating till we obtain:
y.=u +Au,_ +Alu_, +Au_, +. ZA1 .+, .(3.46)

1t2 17¢-3

Notice that y, =y, —u, so that (3.47) can also be re-written as
=p+Y Alu,  +u,. (3.47)
i=1
If we define ©, = Ai , we can rewrite (3.48) as

=p+) 0u,  +u, (3.48)
=1

which is the vector moving average (VMA) infinite
representation of the VAR(1) model and that it is immediately
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useful to discuss its properties. First, because u, is serially
uncorrelated, it is also uncorrelated with the past values of y, ie,
Cov[u,y, ,]=0. For this reason, u, is often referred to as the
vector of innovations of the series at time t. Second, post-
multiplying the expression (3.48) by u’,, taking the expectation,
and exploiting again the fact that u_ is serially uncorrelated, we
obtain COV[yt,ut]=Zu. Third, (3.48) implies that in a VAR(1)
model, y, depends on the past innovations L with a coefficient

matrix Ajl, i.e, with coefficients that are collected in increasing
powers of the VAR(1) matrix. For such dependence to fade
progressively away as the time distance between y  and past

innovations grows—which seems to be a sensible condition, in the
sense that in the VAR(1) model past shocks are gradually forgotten
in a typical geometric decaying fashion— A"1 must converge to zero
as j goes to infinity. In practice, this means that all the N
eigenvalues of the matrix A, must be less than 1 in modulus, in

order to avoid that Ai1 will either explode or converge to a nonzero
matrix as j goes to infinity. Therefore, provided that the covariance
matrix of u, exists, the requirement that all the eigenvalues of A,
are less than one in modulus is a necessary and sufficient condition
for y,  to be stable (and, thus, stationary, as stability implies

stationarity as discussed in Chapter 2), that is:

det(I, —A,z)=0,for |z|<1.1 (3.49)
Of course, you will recognize that under (3.48), (3.49) represents
the multivariate extension of the Wold’s representation theorem
already stated in Chapter 2 for univariate stationary time series.
Finally, using expression (3.48), we have that

1 The condition in (3.50) is simply an alternative way to state that all the
eigenvalues of the matrix A must be less than one in modulus. In fact, all

the eigenvalues of matrix A, are less than one in modulus if and only if

the polynomial det(I, —A, z)has no roots in and on the complex unit

circle.
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sz[yt]Ero = +A1>:HA'1+A§>:H(A§)'+...:iA1’>:u(A;')',
i=0

where A;’ isa N x N identity matrix I, . Also in this case, this is to
be contrasted with the conditional covariance matrix for y
Cov[yt | St—l] = Cov[yt | y:-1] = A1€0V[yt_1 | Y., ]A'1 +I, =L ,
because Covly, , |y, ,]1=0. Interestingly, while the unconditional
covariance matrix is a complex function of both the covariance
matrix of the residuals, X , and of the matrix of vector
autoregressive coefficients A, conditioning on past information,
the covariance matrix of y, is the same as the covariance matrix of
the residuals, z; therefore, when the residuals are simultaneously

uncorrelated (i.e, X is diagonal), then also Covly, |y, ] will be

diagonal.
To find a more useful expression in place of (3.51), note that it can
alternatively be written as

r,=)0xe" (3.52)
i=0
where the coefficients @, are simply the coefficients of the moving
average representations of the VAR. This way of representing
(3.51) is quite convenient because these coefficients can be easily
recovered once we write the VAR(1) process in lag operator
notation, that is,

y,=u+A(L)y, +u,, (3.53)
or, alternatively,

A(L)y, =p+u,, (3.54)
where L is the lag operator discussed in Chapter 2 and
A(L)EIN —A(L). At this point, let G(L)EZ@I,Li be an operator

i=0
such that ©(L)A(L) =1 v and pre-multiply (3.55) by ©(L) to obtain

y, =0(L)u+6(L)u,, (3.55)

that is,
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y, =) 0u+>0u, . (3.56)
=0 i=0

This means that the operator @(L) is the inverse of A(Z). With a

modicum of additional but tedious algebra (that the interested
Reader can find in Liitkepohl, 2005), it is possible to prove that

0 = 1 0_A, (3.57)
j=1
where @ =1, . Finally, post-multiplying by Yen in equation
(3.45), taking expectation, and exploiting the fact that
C‘ov[ut,ytﬁ.] :E[uty'tﬁ} =0 for j >0, we obtain

E@:Y't+1-n) = AEFY e-n) for £>0, (3.58)

Therefore, the cross-covariance matrices I', can be computed as

I =AT,  for 7>0. (3.59)
By repeated substitution, it is easy to show that
I, =AIT for 4>0, (3.60)

and thus, once FO has been computed, all the other cross-

covariance matrix for A>0 can be calculated by recursive
substitution.

Finally, by pre- and post-multiplying (3.60) by D"/* we can also
work out the expression of the cross-correlation matrix, that is,

p,=D"?AT, D'2=D"?A D"DY’T, D" =Wp_ ., (3.61)

1" h-1

where ¥ = D"”ZA]D"”2 . Again, by recursive iteration we obtain
h
p,=¥'p, for 1>0, (3.62)

and thus, once P, has been computed, it is trivial to obtain all the

other correlation matrices.

Example 3.2. Let us suppose that we have estimated the following VAR(1) model
for the one-month and the ten-year Treasury yields that were
already plotted in Example 3.1. Without entering into the details of
the estimation, that we shall discuss in Section 2.4 (we shall
provide a complete sample output in Example 3.3), we only report
the estimated coefficients (t-statistics are in square brackets),
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-0.0490 0.9819 0.0209
Yim 1 | [-2s382] N [210.6540] [0.4077] Yim 1 + Uim ¢
0.0080 0.0009 0.9970 '

u
10Y
[0.8711] [3.3784] [240.0320] oYt

leY t leY -1

and the estimated covariance matrix of the reduced-form residuals
is:

u

5 _ 0.0476 0.0013
0.0013 0.0110|

We also compute the unconditional first and second moments of
the series. Let us start from the mean, that can be computed quite
easily by applying the formula in (3.42):

_1 1 0 0.9819 0.02097) '[-0.0490
n= (Iz _Al) a, = - =
01 0.0009 0.9970 0.0080

0.1801 -0.02097) [-0.0490 [ 84.53 58890/ -0.0490 | |0.5692
-0.0009 0.0030 | 0.0080 | |25.36 510.00 || 0.0080 | |2.8374

Therefore, the one-month Treasury yield has an unconditional
mean of approximately 57 bps, while the ten-year Treasury yield
has an unconditional mean of approximately 284 bps, which
implies an average riskless yield spread of 227 bps per year.
Knowing that the one-month Treasury yield on Sept. 30, 2016 was
0.16%, and the ten-year Treasury yield was 1.58%, we can also
compute their conditional expectations:

-0.0490}{0.9819 0.0209}{0.16}

Mijooszons = E [Yr |YO9/30/16] =25+ A Y oo13016 = [ 0.0080 00009 0.9970 |l 1.58

0.1411
- {1.5834}
For completeness, we note that, at least in hindsight, on October 7,
2016, i.e.,, one period (week) later, the one-month Treasury yield
turned out to be 0.21% and the ten-year Treasury yield was 1.70%.
The differences between the conditional expectations of the yields
and their realized value, approximately 7 and 12 bps, respectively,

are the forecast errors, that we shall discuss in Section 2.6.
We now compute the unconditional covariance matrix of the two

series, I’ :
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ry=AT,A +%, = vec(ly) = vec(A,T,A")) + vec(X,)
vec(Ty) = (A, ® A))vec(T,) + vec(Z,)
=l — (ﬂl®ﬁl)vec(fb) = vec(iu) = vec(f‘o) =

— [1, - (4,®4,)] "vec(Z.)

Plugging in the estimates reported above, we find:
09641 00205  0.0205 0.0004])"
0.0009 09790 1.88e-05 0.0208
0.0009 1.88-05 0.9790 0.0208
8.10e-0.7 0.0009  0.0009  0.9940

0.0476 29.9370 41.6850 41.6850 292.152 | 0.0476 4.7461
0.0013| | 1.7951 60.0539 12.5807 252.762 | 0.0013| |2.9602

* 0.0013| | 1.7951 125807 60.0539 252.762 (| 0.0013| |2.9602
0.0110 0.5418 10.8845 10.8845 242.671] 0.0110 2.7235

Vec(f"o)=[|4—A1®A1]7lvec(§:u): I, -

which gives the unconditional covariance matrix:
o~ [4.746 2.960] , 0.0476 0.0013
0

=X, = .
2960 2.724 b 0.0013 0.0110
Clearly, conditional (Z,) and unconditional second moments are

radically different: the residuals, also because both series are
highly serially correlated, have very low variances and a
correlation of 0.057 (= 0.0013/(0.0476x0.0110)%/2). In
unconditional terms, one-month and ten-year rates are
characterized by rather large standard deviations (2.179 and 1.650
percent per year) and a correlation of 0.823 (=
2.960/(4.746x2.724)1/2). The latter is more in line with reality and
asset pricing expectations, of course.

2.3 Generalization to a VAR(p) Model

Now that we have analyzed the properties of a VAR(1) model, their
generalization to the VAR(p) model
y,=a,+Ay, +Ay, ,+.+Ay, +u that we presented in
(3.11) should be quite obvious.

Using again the lag operator L as we did for the VAR(1), (3.11) can
be rewritten as

t’

(1,-AL-..-AL )y, =a,+u,, (3.63)
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where I isthe N x /N identity matrix. More compactly, (3.64) can
be rewritten as

A(L)y,=a,+u,, (3.64)
where now A(L) = I,-AL-.- ApL”. Assuming that y, is weakly
stationary, we obtain that

n=£[y,]=(1, A, ---4,) a, (3.65)
provided that the inverse of the matrix (IN —A, —...—Ap) exists.
Also in this case, the conditional mean vector has expression

T E[y[ |yH] =a,+ Z;A/ytﬁ. . Again, for notational

convenience, we can transform equation (3.11) by defining
Y =y, K
y, =AYy, _ +tAy, ,+.+Ay, +u,. (3.66)

Using this equation and applying the same techniques that we have
applied in the case of the VAR(1) in Section 2.2, it is possible to
show that:

= Cov[yt,uJ = Zu , the covariance matrix of u,;

. Cov[ytfh,ut]=0 forany A>0;

= [, =AT,  +.+ Ath_p for h>ps

= p,=¥p  t.t lI-’pph_p for h>p, where ¥, = D'l/zAiDl/2 :

Naturally, all the considerations that we have expressed with
references to a VAR(1) can easily be generalized to a VAR(p)
model. Such an effort simplifies if we consider that a VAR(p) model
can be represented as a Kp-dimensional VAR(1). To this end, define

7 A A, A,

g I, 0 - 0
e =l "R =0 1, - 0 [367)
(Np)x : (NpxNp) . : o

V'ipa 0O 0 - 0

which is also known as the companion matrix of the VAR(p) system,

and U, =[u, 0...0]". Then a VAR(p) model can be written as
(Kp)xt



3.Vector Autoregressive Moving Average (VARMA) Models

Et = Flgt—l +Ut’ (3-68)
where
x 0 ... 0

0O 0 .. 0
E[UU]=| . . .| and E[U,U"_,]=0 for 2>0.

0O 0 .. 0
Clearly, (3.69) can be represented in the same form of equation
(3.48), i.e., in its VMA representation,

§,=U +FU, +FU_, +.=)FU, +U,,(3.70)

i=1

that is, denoting I, =JF,]J', where ] = [IN,O,...,O], we have:

§,=>MU, +U,. (3.71)

i=1
It follows that a VAR(p) model is stable (and thus stationary) as
long as the eigenvalues of the companion matrix F, defined in

(3.68) are all less than one in modulus, which, implies
det(I, —A z—.. —Apz”) #0,for |z|<1. (3.72)

This condition states that the roots of the characteristic polynomial
associated with the matrix should all exceed one in modulus (i.e.,
they should lie outside the unit circle) or, equivalently, that the
(inverse) roots from the characteristic polynomial should all lie
inside the unit circle, as we already discussed in Chapter 2 for
univariate AR models.

2.4 Estimation of a VAR(p) Model

Let us consider an unrestricted, stationary VAR(p) model similar to
the one specified in (3.11) and suppose that we want to estimate
its parameters.? Following the notation in Liitkepohl (2005), we
can write (3.11) as

Y=BZ+U, (3.73)

2 A model is said to be unrestricted when the estimation process is
allowed to determinate any possible value for the unknown parameters;
on the contrary, a model is restricted if the estimation procedure restricts
the parameters in some way (for instance, by imposing that some of them
is equal to constant values).
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where Y=[y,y,.--,¥7] ) BE[aO,Al,AZ,...,Ap}
U=lu,u,..u, and Z=(%2,Z,,.Z2,,] with
Z =1y .Y, - ,y'tfpﬂ]'. Also consider that y=vec(Y),
B=vec(B), and u=vec(U), where “vec” is the column stacking

operator that stacks the columns of a matrix in a column vector.
Also recall that the covariance matrix of the residuals is X .

u

The multivariate LS estimator (here a GLS estimator) of B
minimizes the quantity:
S(B) = w (I7®L,) 'u (3.74)

Although we shall skip the details of the computation of the
estimator (which the interested Reader may find in Liitkepohl,
2005), it is useful to report the solution to the problem:

B=((Zz) ' ®z%,)(z®%;" )y =((Z2)'Z®1, )y .(3.75)

Notably, the GLS estimator in (3.76) is identical to the OLS
estimator obtained by minimizing:

s@)=u'u=|y-(z®I,)B||y-(2®I,)8].376)
as demonstrated by Zellner (1962). Therefore, as mentioned

before, a standard, unrestricted VAR(p) can be simply
estimated equation by equation by OLS. We shall call such an

estimator B: by construction, being obtained by stacking rows of
ﬁ OLS estimators obtained equation-by-equation, B isaNXx (p+1)

matrix.

The finite-sample properties of the LS estimator are difficult to
derive analytically given the complexity of the expression in (3.76)
and therefore we only discuss its asymptotic properties here.
Under standard assumptions (see Liitkepohl, 2005, for details), the
OLS estimator B is consistent and asymptotically normally
distributed,

JT vec(B-B)—2> N(0,%,), (3.77)

where the vec of B needs to be taken to turn the estimator into a
vector. This result can also be written more intuitively as

vec(B) < N(vec(B), 25/T), (3.78)
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«_n

where the “a” on the top of distribution symbol means
“asymptotically distributed as” and X, =plim(ZZ'/ ™! XX .
Intuitively, this means that as 77— «, the covariance matrix of the
OLS estimator converges (in the sense that deviations from the

right-hand side of the formula carry a very small probability) to a
complex web of inverse average cross-products between lagged

values of the endogenous variables, plim(ZZ'/ 7)™, multiplied by
each of the elements of the covariance matrix of the structural
residuals, £ . A few Readers will note the analogy with the
05 (X'X)™" expression in Chapter 1.

The covariance matrix Zu can be estimated as

X = uu' or X =
u T_Np; t t u

where Ut = ¥t — BZ:_1_Both estimators are consistent and

T
A
u

=1

a'. (3.79)

t

N

t

asymptotically normally distributed independently of B. The first
estimator is sometimes referred to as the “degree-of-freedom
adjusted” version of the covariance matrix estimator.

Alternatively, one may estimate a VAR(p) model using maximum
likelihood methods. Given a sample of T observations on the N-
variate variable Y defined as above and a pre-sample of p initial

conditions Y pirY _puar Vo under the assumption that the
process is stationary and that innovations are a Gaussian
multivariate white noise, the variables Y =[y1,y2,...,yT]' will also
be jointly normally distributed. In addition, because the
multivariate white noise is assumed to be Gaussian, the
innovations at different times will be independent (which allows

for considerable simplification when computing the likelihood
function). The noise error terms are assumed to be independent

with covariance matrix £ and, as an implication, u (that is the
vectorization of U as discussed above) has a covariance matrix
X, =1 ®X . As a cumulative result of all these assumptions, u

has the following NT-variate normal density:
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_NT 1 1
f(w)=27) *|1,9%,|? eXp(—Eu'(IT ®2u1)uj :

The density function in (3.81) can also be expressed in terms of the
endogenous variables:

£(y)=(r) 2 |IT ®>3u|_; eXp(—%(Y—BZ)'(IT ®Z;1)(Y—BZ))

(3.81)
Therefore, the log-likelihood that should be maximized can be
represented as follows:

(B,X,;Y,Z)=Inf (Y)_—ﬂln(zn)——ln\z \——(Y BZ)'(1, ®2.')(Y-BZ)

_NT »
== In(2m) 1n\>:\ tr(U): U)

(3.82)
Importantly, under the assumption of Gaussian innovations, the
OLS estimator in (3.76) is equivalent (conditional on the initial
values, i.e., the equivalence is in fact to a quasi-ML because of this
form of conditioning, see Chapter 5 for additional details) to the ML
estimator of the coefficients. Moreover, the ML estimator of the

matrix Zu is

1&., .

= uu 3.83

Z, =725, (3:83)
which is nothing else than the average cross- vector product of the
OLS residuals. Substituting the expression for the matrix X that

maximizes the likelihood, in the class of all symmetric positive
definite matrices, back into (3.83), we obtain

/(B,Z, YZ)_—gln(zn)——lnp: |——NT (3.84)

This object is also known as the concentrated log-likelihood of the
VAR(p) model. Optimizing (3.83) in one pass or maximizing over
(3.84)-(3.85) iterating between the two objects until convergence
is achieved, will return identical results. Example 3.3 shows the
typical estimation outputs of OLS estimation of a VAR model.



Example 3.3.
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Consider the weekly yields of the one-month, one-year, five-year,
and ten-year US Treasury bonds between January 1990 and
December 2016 (for a total of 1,408 observations). Suppose that
we specify a VAR(1) model for the series. Using Eviews, we have
estimated the following model:

-0.0087 [ 0.835

Yim 1 (-0.775) (0.000)
0.021| | -0.031

Yiv i _| o | | oo
Yoy ¢ 0.009 -0.016
(0.527) (0.012)

Yiovs 0.016| |-0.007
L 217 | | (0260

0.219

(0.000)

1.023

(0.000)

0.022

(0.059)

0.008

(0.456)

-0.083

(0.035)

0.034

(0.028)

0.993

(0.000)

0.008

(0.703)

0.032|
0(058::)1 Yim 14 Ui ¢
~(0010) Yiv 1 Upy ¢
- 9096(3} Yoy 11 Usy
0.988 Yioy 11 Uygy ¢

(0.000) |

where p-values are reported in brackets. The estimated covariance

matrix of the residuals is:

0.043
- 0.001
Z —

“10.001
0.001

0.001
0.007
0.007
0.005

0.001
0.007
0.012
0.011

0.001
0.005
0.011|
0.012

The complete estimation output is reported in Table 3.3. Below
each estimated coefficient, the Reader finds the standard errors
and the associated p-values (in brackets). The coefficients that are
statistically significant at a size of the test lower or equal to 5% are

boldfaced.
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Yield 1M Yield 1Y Yield 5Y Yield 10Y
Yield 1M (-1) 0.835 -0.031 -0.016 -0.007
0.012 0.005 0.007 0.006
(0.000) (0.000) (0.012) (0.260)
Yield 1Y (-1) 0.219 1.023 0.022 0.008
0.022 0.009 0.012 0.011
(0.000) (0.000) (0.059) (0.456)
Yield 5Y (-1) -0.083 0.034 0.993 0.008
0.039 0.015 0.021 0.020
(0.035) (0.028) (0.000) (0.703)
Yield 10Y (-1) 0.032 -0.031 -0.001 0.988
0.030 0.012 0.016 0.015
(0.288) (0.010) (0.960) (0.000)
C -0.008 0.021 0.009 0.016
0.027 0.010 0.014 0.013
(0.775) (0.042) (0.527) (0.217)
R-squared 0.993 0.999 0.997 0.997
Adj. R-squared 0.993 0.999 0.997 0.997
Sum sq. resids 59.956 9.306 16.509 15.014
S.E. equation 0.207 0.081 0.108 0.103
F-statistic 51568.215 303363.793 139899.774 117486.468
Log likelihood 224.179 1535.678 1132.122 1198.978
Akaike AIC -0.311 -2.174 -1.601 -1.696
Schwarz SBC -0.293 -2.156 -1.582 -1.677
Mean dependent 3.035 3.166 4.155 4.735
S.D. dependent 2.512 2.393 2.166 1.893
Log likelihood 6215.082
Akaike AIC -8.800
Schwarz SBC -8.725

Table 3.3 - Estimation output of a VAR(1) model for the one-
month, one-, five-, and ten-year yields of the U.S. Treasury bonds

Each column of Table 3.3 represents one equation of the system;
because usually equations are written as rows, this implies that
they have been flipped around to populate the columns. For
instance, the first column corresponds to the first equation of the

VAR(1):

Yime = —0.008+0.835 Yimea T 96%2]5)9 Yivea ™ 9693%? Yoy ra t 9698?;)2 Yioy 11 T

(-0.775)  (0.000)
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As we have discussed, each equation can be estimated separately
by OLS. Therefore, the second panel of Table 3.3 presents standard
OLS regression statistics for each equation (including the R-square
and the adjusted R-square), to which we can attribute the same
meaning that has been attached to them in Chapter 1. For example,
the F-statistic refers to the null hypothesis that all the lags of the
endogenous variables are jointly non-significant in each of the
system equations. The numbers at the very bottom of the table are
instead the summary statistics for the VAR system as a whole. For
instance, because an overall, multivariate R-square statistic is not
obviously defined, while for each single equation we do report one
R-square, in overall terms it makes sense to report the maximized
log-likelihood, also because we know that the OLS and ML
estimators are identical when the errors are multivariate normal.
In this example, we have assumed that one lag of the endogenous
variables was sufficient to explain the key features of the data.
However, this assumption was rather arbitrary. Therefore, in
Section 2.5, we shall discuss how we can decide the appropriate lag
length for a general VAR model.

Before we move on, we shall summarize below two extremely
important results that we have discussed (although we have not
provided the proofs) in this section:
= when a reduced-form VAR is unconstrained, the GLS
estimator is the same as the OLS estimator and therefore an
unconstrained VAR can be estimated equation by equation
by OLS;
= for an unconstrained VAR, the ML and OLS estimators are
the same under the assumption of Gaussian innovations
(further discussion of this topic is provided in on-line
supplementary material).

2.5 Specification of a VAR Model and Hypothesis Testing

In Section 2.4, we have discussed how to estimate a VAR model of
order p, but we have not explained how a researcher may go about
deciding the appropriate number of lags to be included. In general,
increasing the order of a VAR model reduces the (absolute) size of
the residuals and improves the fit of the model, but also its
forecasting power. Equivalently, as it is often the case in applied
econometrics, by increasing the number of parameters of the
model, we generally improve its in-sample accuracy, at expenses of
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its out-of-sample predictive power. This occurs because in a VAR,
long lag lengths quickly consume degrees of freedom in the
individual regression equations (i.e., the number of observations
minus the number of parameters to be estimated): if the lag length
is specified to be p, each of the N equations will contain Ap

coefficients plus the intercept term. Therefore, appropriate lag
selection is usually crucial to the usefulness of VAR(p) models. In
the following, we discuss the selection of the common lag length
parameter p to apply to all equations of the VAR model. This
prevents us from considering the case of restricted, standard
VAR models in which the structure and number of lags included in
each equation may vary across different equations. These models
can be useful but tend to be less frequently used in applied
finance.3

A first method that can be used to select the appropriate lag length
is the likelihood ratio (LR) test. In order to understand how this
works when applied to the selection of p, suppose that we want to
test the hypothesis that a set of variables was generated from a

Gaussian VAR with p, lags against the alternative specification of

P, > P, lags. For instance, assume that we aim at testing whether

4 lags are appropriate, against an alternative specification with 5
lags. Under the assumption of normally distributed shocks
entertained earlier (or when the VAR is assumed to be correctly
specified under the quasi-MLE principle), the likelihood ratio
statistic is

LRT(p,,p,)=T(In[E"

where T is the number of usable observations, |f:50

_ ‘f:lﬁ
u

), (3.85)

is the

determinant of the covariance matrix estimated under the
hypothesis that the VAR model includes po (say, 4) lags of all the

3 This has a simple justification: when the VAR includes restrictions, then
the numerical equivalence between ML, GLS, and OLS estimators breaks
down, and consistent estimation needs to be performed jointly using ML
methods applied to the full multivariate model. As for their specification,
the number of lags in each of the individual equations is often specified
using simple t- or F-tests to either go general-to-simple, or simple-to-
general. Moreover, there is an inner incoherence between estimating a
multivariate model by MLE and performing lag length specification tests
at an equation-by-equation level.
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is the determinant of the covariance matrix

variables and |f:”1
u

estimated under the alternative hypothesis that the VAR model
contains p1 (say, 5) lags.

As an alternative, Sims (1980) has proposed a small sample
modification of the LR statistic in (3.87) that consists of using
T —(Np+1) rather than T as its scale factor, where Np + 1 is the

number of parameters per equation under the alternative
hypothesis:

LRT'(py,p,)=(T = Np-1)(In[E% ). (3.86)

Both statistics have an asymptotic y* distribution with degrees of
freedom equal to the number of restrictions in the system, N(p1 -
po). In our example, there are N restrictions in each of the N
equation, for a total number of N? restrictions. Large values of the
test statistics in (3.86)-(3.87) trigger a rejection of the null

— |y
)

hypothesis that p, lags are sufficient to capture the key features of

the (conditional mean function of the) data. On the contrary, if the
calculated value of the statistic is less than the critical value of the

y* corresponding to the specified size of the test, we will not be
able to reject the null that p, lags are sufficient. When this occurs,

we may think of restricting the model even more, and calculate the
likelihood ratio statistic under the null that less than p, (say,

Do — 1= 3= 1) are adequate, against the alternative of p, and to

iterate this procedure until we can reject the null hypothesis. This
way of specifying the model by sequential LR testing the lag order
of a VAR(p) is said to represent a general-to-simple approach.*

On the one hand, LR tests are quite intuitive, and they are
applicable to any type of cross- and within-equation restrictions.

For instance, let ZZ and Zf be the covariance matrices of the

residuals of the unrestricted system and of the restricted one,
respectively, for whatever types of restrictions (e.g., that the

4 Technically, a general-to-simple approach should impose that the size of
the tests be adjusted because—being based on a common sample—the
tests fail to be independent. However, this issue tends to be disregarded
in practice.
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covariances between alternative pairs of reduced-form residuals
be identical). Then the statistic

T (In|E%|-[£2) (3.87)
can be compared to a y* distribution characterized by a number of

degrees of freedom equal to the number of restrictions in the
system. In case the resulting sample statistic is less than the critical

value under a y* at the specified size level, we shall not reject the

null hypothesis that the restricted model is adequate to fit the data.
On the other hand, LR tests can only be used to perform a pairwise
comparison of two VAR systems, one that is obtained as a
restricted version of the other. We also say that the smaller VAR
with fewer lags is nested inside the bigger VAR with a larger
number of lags. As a consequence, if we want to determine the
appropriate number of lags that are needed to best characterize a
sample, we have first to specify the largest VAR and then proceed
to pair it down until we can reject the null hypothesis, meaning
that while in some applications going simple-to-general may be
logically appealing, sequential LR testing is inconsistent with it. A
further drawback of the LR test approach is that, as already

emphasized, the y* test will be valid asymptotically only under the

assumption that errors from each equation are normally
distributed. In general, without distributional assumptions, it is
unclear whether performing LR tests may have any merit. Finally,
when the sample size is small, it remains unclear whether LR tests
may display reasonable power without being subject to substantial
size distortions (see Hoffman and Schlagenhauf, 1982, for a
discussion).

An alternative approach to the selection of the appropriate lag
length is to minimize a multivariate version of the information
criteria that were firstly presented in Chapter 2, namely:

(M)AIC =In|E, |+ 2?, (3.88)
(M)SBC =Inlg | +§1n(T), (3.89)
(M)HQIC =InE, |+ 2§In(ln(T)), (3.90)

where (M) stands for multivariate (to signal that this is a
multivariate generalization of the univariate versions proposed in
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Chapter 2), flu is the estimated covariance matrix of the residuals,

T is the number of observations in the sample, and K is the total
number of regressors across all equations in the VAR(p) (that is,
N?’p+N, where N is the number of equations and p is the
number of lags).> The intuition behind the criteria and the
properties that we discussed in Chapter 2 fully apply to their
multivariate generalizations.

Finally, it is interesting to introduce one additional criterion to
determine the model order/lag length proposed by Akaike (1969),
namely, the final prediction error (FPE) measure:

T+Np+1] 1
T-Np+1

, (3.91)

u

FPE(p) {

where |2~Iu| is the determinant of the estimated covariance matrix

of the residuals from a given VAR(p) model. Example 3.4 shows
how these criteria can be used and compared to select the best
fitting VAR(p) model.

In Example 3.3, we have specified a VAR(1) model for the weekly
yields of one-month, one year, five-year, and ten-year US Treasury
bonds. However, we have failed to check whether a larger VAR
model could be more appropriate to fit the data.

Table 3.4 shows the values of the information criteria that we have
just discussed for a number of lags ranging between 0 and 15. It
also reports the maximized log-likelihood associated to each model
and the sequential (modified, in the sense that it is computed
applying Sims’ small sample adjusted in (3.87)) log-likelihood test
outcomes. Therefore, the second row reports the LR test of p=1

versus the alternative p =2, the third row tests the null of p=2
versus the alternative p =3, and so on. In the general, the kth row

5 When a VAR is estimated equation-by-equation by OLS, the covariance
matrix is just computed residually as a result of the estimation process, as
we know from Chapter 1. However, when a VAR model is estimated by
MLE (and this must occur when it is restricted and thus OLS is not a
consistent estimator), we should in principle take into account also the
N(N +1)/2 elements of the covariance matrix as parameters to be

estimated.
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shall use a LR statistic to test the null of p=k-1 versus the
alternative of p=Kk.

Lag LogL LR FPE AIC SC HQ

0 -4979.73 NA 0.015 7.150 7.1653 7.1559
1 6156.06 22191.71 1.77E-09 -8.804 -8.728 -8.775
2 6258.44 20342 1.56E-09 -8927 -8.792* -8.877*
3 6278.01 38.77 1.55E-09 -8933 -8.737 -8.859
4 6293.26 30.13 1.55E-09 -8932 -8.676 -8.836
5 6348.24 10832 147E-09 -8987 -8.672 -8.869
6 6369.05 40.87 1.46E-09 -8994 -8.618 -8.854
7 6384.72 30.68 1.46E-09 -8994 -8.558 -8.831
8 6400.32 30.47 1.46E-09 -8993 -8.497 -8.808
9 6413.26 25.20 1.47E-09 -8989 -8.433 -8.781
10 6436.94 45.96 1.45E-09 -9.000 -8.383 -8.769
11 6454.65 3426  1.45e-09* -9.002* -8.326 -8.749
12 6467.35 24.53 1.45E-09 -8998 -8.261 -8.722
13 6484.71 33.39 1.45E-09 -9.000 -8.203 -8.702
14 6498.44 26.331* 1.46E-09 -8996 -8.139 -8.676
15 6509.84 21.82 1.47E-09 -8990 -8.073 -8.647

Table 3.4 - VAR selection criteria applied to one-month, one-, five-
and ten-year U.S. Treasury yields

Unsurprisingly, as we have already observed in Chapter 2, different
criteria may lead to different lag selections. In this case, the AIC
and the FPE select quite a large VAR(11) model, while the Schwarz
and the HQ criteria favor a more parsimonious VAR(2) model.
However, a VAR(11) model for the four Treasury yield series
requires the estimation of a 180 parameters

(N?p+N =4°x11+4=180) with a saturation ratio (that is, the

number of observations available across the entire model per each
parameter that has to be estimated) of only 7.8. Instead, a VAR(2)
model implies the estimation of only 36 parameters, with a much
safer saturation ratio of 39.1 parameters. Therefore, we elect to
specify and estimate the VAR(2) model below (p-values are in
parentheses):
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[-0.001] [0.877 0.170 -0.118 0.042 |

Yiu ¢ (0.725) (0.000) (0.110) (0.515) (0.796) A
' 0.014 -0.021 1.185 0.010 -0.046 '
Yiv t | (0168) N (0.039) (0.000) (0.149) (0.456) Yiv ta N
Yoo | | 0004 |-0012 —0.014 1270 0.066 || Ve .,
’ (0.793) (0.400) (0.800) (0.000) (0431) '
Yorel | 0016 | [-0.005 —0051 0.126 1.098 |LYwoves
| (0.236) | | (0.727) (0.327) (0.157) (0.000) |
[ 0.049 0059 0031 -0.007]
(0.057) (0.591) (0.865) (0.965) Yim 12 T
0044 -0.167 -0.081 -0.028 J
n (0.000) (0.000) (0.240) (0.649) le -2 + 1Y .t
0% 0T 120 0077 | e ||
~0.010 -0.061 -0.127 —-0.104 |LYioyt-2] [Yhoye
| (0454) (0.258) (0.153) (0.191) |

with estimated covariance matrix of residuals equal to

0.043 0.001 0.001 0.001
A 0.001 0.006 0.006 0.005

“10.001 0.006 0.011 0.010|
0.001 0.005 0.010 o0.010

The coefficients that are significant at a confidence level lower or
equal than 5% have been highlighted.

2.6 Forecasting with a VAR model

Similarly to what we have discussed in Chapter 2 for AR models,
one obvious application of VAR models is forecasting. Analogously
to what we have discussed with reference to univariate models,
also in the context of VAR models, loss functions that lead to the
minimization of the mean squared forecast error (MSFE) are the
most widely used. Evidence in favor of using the MSFE as key
forecasting index are given, for instance, by Granger (1969b) and
Granger and Newbold (1986), who show that minimum MSFE
forecasts also minimize a range of loss functions other than the
MSFE. Moreover, for many loss functions, the optimal prediction
function is a simple function of minimum MSFE predictions.

Consider a (stationary) N-dimensional VAR(p) process similar to
the one in (3.11). Assume that u, is an independent multivariate

white noise, such that u, and u, are independent for t#$S and
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thus E[u,,|3,]=0 for h>0. The minimum time t MSFE

prediction at a forecast horizon h is the conditional expected value
Ely., 13, ]=E]y. My Is<t]],  (392)

where 3, is the information set containing the variables up to and

including period t. This prediction minimizes the MSFE of each
component of the vector y,.Therefore,

Et I:ymlz | Sr] = ao + AlEt [yuh—l | Sr ] Tt ApEt |:yt+1z—p | St :| ’

is the optimal h-step-ahead predictor of a VAR(p) process. The
formula in (3.94) can be used recursively to compute h-step-ahead
predictions starting with h=1. For instance, let us consider the
case of a VAR(1) model. The one-step-ahead forecast of y, with

origin at time t is

E|y..13, ]=a,+AE [y, |3, |=a,+Ay, (3.94)
where £ [yt |St]=yt, given that we are at time t. Then, in order
to obtain the two-step-ahead forecast we can simply use the value
E, [y i |SJ that we have just computed. Through this iterative
process, we can compute the h-step-ahead forecast. The
conditional expectation that turns out to provide the minimum

MSFE has the following properties:
= jt is an unbiased predictor, meaning that

E|:yt+/z —E, [yt+b IS:H =0;

* if u, is an independent white noise vector (that, as we shall
recall, is a stronger assumption than being uncorrelated),
MSFE [ E,[Yyn]|= MSFE[ E [V |V Yig] ], meaning
that MSFE of the prediction equals the conditional MSFE
given Y,,Y,4,....

In case u, is not an independent white noise, additional

assumptions are required to find the optimal prediction of a
VAR(p) process. However, without these assumptions it is still
possible to find the minimum MSFE predictor among those that are
linear functions of y,,y, ,,.... Without going into the details of the

proof (which can be found in Liitkepohl, 2005), it can be shown
that the best linear predictor in terms of MSFE minimization is:
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Ef |:yt+h | St } = aO + AlEt |:yt+h—1 | St :I Tt ApEt I:y[+]1—p | St :I .

(3.95)
For the sake of simplicity we analyze again the case of a VAR(1)
model, where the prediction function is

Et l:yt+h | St:l = a0 + AlE[thfl I St} ' (3'96)
The one-step forecast error U, (1) is simply:

ﬁt(l):yHl _Et |:yt+1 | St} :ut+1’ (397)
and the associated covariance matrix of forecast errors is X,. By

iterating over this formula, we can obtain that the h-step forecast
error U, (h) as

h-1
ﬁt (h) = yt+b - Et I:yt+h | St:' - ZAiuHh—j 4 (398)
=0
where A°=1,. The covariance matrix of the forecast errors is

h-1 )
therefore ZAQE(A'l)'. The generalization to a VAR(p) model is
i=0
straightforward, although computations are non-trivial (the
interested Reader is referred to Liitkepohl, 2005). Example 3.5
shows VAR models in action when it comes to prediction.

Figure 3.2 shows the one-week ahead forecasts of the one-month,
one-, five-, and ten-year U.S. Treasury bond yields obtained from
the VAR(2) model estimated in Example 3.4.
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Figure 3.2 -One-week-ahead forecasts of one-month, one-, five-
and ten-year U.S. Treasury yields from a VAR(2)
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Table 3.5 reports the forecast accuracy measures that have been
discussed in Chapter 2, namely, the root mean squared error
(RMSE, which is just the square root of the mean square forecast
error), the mean absolute error (MAE), and the mean absolute
percentage error (MAPE). Clearly, the lower these prediction error
measures are, the higher the practical usefulness of a model.

Variable Inc. obs. RMSE MAE MAPE
1M Yield 1409 0.21 0.10 35.18
1Y Yield 1409 0.08 0.05 3.63
5Y Yield 1409 0.11 0.08 2.74
10Y Yield 1409 0.10 0.08 1.99

RMSE: Root Mean Square Error
MAE: Mean Absolute Error
MAPE: Mean Absolute Percentage Error

Table 3.5 - Forecast accuracy measures for a VAR(2) model of
one-month, one- five- and ten-year U.S. Treasury yields
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Obviously, these accuracy measures are useful when we would like
to compare the predictive power of different models. For example,
we may want to compare the forecast accuracy of the VAR(2) vs.
the VAR(11) model that was selected by the FPE and AIC criteria in
Example 3.4. Table 3.6 displays the forecast accuracy measures for
the VAR(11) model. It is evident that the VAR(2) and the VAR(11)
models display very similar predictive power, although the
VAR(11) slightly outperforms the VAR(2) according to some
specific indicators.

Variable Inc. obs. RMSE MAE MAPE
1M Yield 1409 0.19 0.10 48.40
1Y Yield 1409 0.08 0.05 3.96
5Y Yield 1409 0.10 0.08 2.79
10Y Yield 1409 0.10 0.08 1.99

RMSE: Root Mean Square Error
MAE: Mean Absolute Error
MAPE: Mean Absolute Percentage Error

Table 3.6 - Forecast accuracy measures for a VAR(11) model of
1-month, 1-,5- and 10-year U.S. Treasury yields

3- Structural Analysis with VAR Models
3.1 Impulse Response Functions

In Section 2, we have discussed the statistical properties of a
VAR(p) model, how it can be estimated, and how it can be used in
forecasting applications. However, VAR models are often used in
practice with the goal of understanding the dynamic
relationships between the variables of interest. For instance, in
Example 3.4, we have estimated a VAR(2) model for the one-
month, one-, five-, and ten-year U.S. Treasury yield series and then,
in Example 3.5, we have computed and assessed one-step-ahead
forecasts. However, a researcher may also be interested in
studying the effects that a sudden increase (decrease) in the 1-
month rate, for instance as a result of a tight (expansive) monetary
policy, may have on the other yields in the system (when these four
specific maturity buckets are used to summarize the term
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structure of the Treasury yield curve). In other words, a researcher
may be interested in the effects that a shock to one (or more)
variable(s) produces over the others. Therefore, in this section we
introduce impulse response functions (in short IRFs). A general
definition of impulse response function is as follows.

Definition 3.4. (Impulse Response Function) In the context of a VAR model, an
impulse response functions trace out the time path of the effects of
an exogenous shock to one (or more) of the endogenous variables
on some or all of the other variables in a VAR system.

To simplify, let us start our discussion from the simple VAR(1)
model (written in reduced form) discussed in Section 2.1, namely:

{yl,t}:[ai,o}{am ai,z}{yl,tﬂ{ul,t](g_gg)
You a0 Q1 A, || Yoru Uy,

We already know that a stationary VAR(p) model has a moving
average representation, and, in particular this also applies to the
VAR(1), i.e., using a compact notation,

Yi=a,+ Ay, +U, (3.100)
can be rewritten as
Y, =p+Y Au (3.101)
i=0

or, alternatively, recalling the algebraic steps that we have
discussed in Section 2.2, to

Y, = "+Z®iut7i , (3.102)
i=0

Yit ﬂl} =\ Gy Gy |:ul,ti }
=7+ . (3.103)
[YZJ le iz—o:{ez,m) 052y || Uz

You will also recall from our discussion in Section 2.1 that the two

that is,

error processes, {u1 [} and {u2 t} can be also represented in terms

of the two sequences {51 t} and {6‘2 , }, i.e., the structural (or pure),

unobserved innovations:

el 1 1 _b1,2 &1t
[Uzj_m[—bn 1 }sz- (3.104)
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Therefore, plugging (3.105) into (3.104), we obtain a 2x2 matrix
@ equal to

(D- ) A:IL { 1 _b1]2:| ) ®i |: 1 _b1Y2:|
I 1_b1,2b2,1 _b2,1 1 1_b1,2b2,1 _bz,l 1

and therefore,
yo=p+) ®g . (3.106)
i=0
It is now easy to see how the moving average representation of
the VAR can be useful: the coefficients of the matrix ®,, i.e., each

¢,, can be used to generate the effects of shocks to the

innovations ¢, ,, &, on the entire time path of the {yu} and

2,t

{y“} series. In other words, the four coefficients ¢, Y ¢, 2’

b1 and b, 20 for each i can be regarded as impact

multipliers. For instance, ¢

20, Tepresents the instantaneous

impact on y,,of a one-unit change in ¢,, (i.e, the structural

innovation to y,,), while ¢ is the one-period response of

2(1)
Y., to the same unit change in ¢, .. The cumulative effects of a
one-unit shock (or impulse) to ¢,, on the variable y,, after H

periods can then be obtained by computing the sum

H
Z/=o¢1.2(i) . Clearly, the same result holds for the cumulative

effects of a unit shock to ¢, on y,,, which can be computed as

H
Zi=0¢2,1(1.), and so on. Interestingly, if we let the horizon H

approach to infinity, we obtain the so-called long-run
multipliers. Indeed, as the sequences {yu} and {yz,[} are

assumed to be stationary, it follows that };2 ¢; ;) forj k=1, 2,
..., N, is finite. Put into other words, because a VAR model can be
easily generalized to contain N variables instead of two, the

element ¢,~ iy’ i.e, the (jk)th of the matrix ®_ represents the
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reaction of the jth variable of the system to a one-unit shock in a
variable k, i periods ago. Therefore, given Definition 3.4, the set of

elements ¢/km with 7=1,2,..,H can be easily seen as the

impulse response function of the jth variable of the system, up to

H
the period H. The sum Zi:0¢j,k(i)’ that represents the

cumulative effects of a shock to variable k on the variable j after H
periods, is also known as the cumulative response of the variable
j to a shock to the variable k.

What is the problem with the VAR representation in (3.107)? If the
VAR system were identified, i.e., if it were possible to recover all
the parameters of the structural VAR model from the estimates of
the VAR in its standard form, it would be possible to trace out the
effects of a shock to one (or more) of the structural innovations to
the variables. However, we already know from Section 2.1 that a
VAR in its reduced form is under-identified by construction and

therefore we are not able to compute the coefficients ¢,~ «h from

the OLS estimates of the VAR in its standard form unless we do not
impose adequate restrictions. As we have seen in Section 2.1, one
method to place these restrictions consists of the application of a
Choleski decomposition. In practice, by using a Choleski
decomposition, we can re-write the VMA representation of a
VAR(1) in (3.103) (note that this also applies to a VAR(p), because
a VAR(p) can be rewritten as a VAR(1)) such that

Y, =p+) OWWl_, (3.107)

i=0
where Zu =WZW', g, = W‘luH ,and ® =0O W. It shall be easy to

recognize that (3.108) is equivalent to (3.107). However, it should
be already clear from Section 2.1 that a Choleski decomposition
allows only the shock to the first variable to contemporaneously
affect all the other variables in the system. A shock to the second
variable will produce a contemporaneous effect on all the variables
in the system, but the first one (this may of course be impacted in
the subsequent period, through the transmission effects mediated
by the autoregressive coefficients). A shock to the third variable
will affect all the variables in the system, but the first two, and so
on. Therefore, it is important to recognize that this identification
scheme forces a potentially important identification asymmetry
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on the system that is typical of Choleski ordering schemes. For
instance, in our initial bivariate example, a shock to &, has a

contemporaneous effect on both u,, and u,, (and thus on y ,
and y, ), butashockto ¢,, does not contemporaneously impact
u,, (and thus y, ). For this reason, y,, is said to be “casually

prior” to y, ., a bit of language that will be better explained later

on. Of course, as already emphasized in Section 2.1, a different
ordering of the variables in the system would have been possible,

implying a reverse ordering of the shocks and that y, , would have

been “casually prior” to y,,. To make our reasoning clearer, in

Example 3.6 we see how the decomposition works in practice.

Let us consider a VAR(1) for the one-month U.S. Treasury bill and
the ten-year Treasury bond yields (the same series for the January
1990 - December 2016 sample that we have estimated in Example
3.2):

-0.0490 0.9819  0.0209 |
Yim 1 | [-2s382] 4 [210.6540] [0.4077] Yim 11 n Uim ¢
0.0080 0.0009 0.9970 ’

u
107
[0.8711] [3.3784] [240.0320] | oVt

leY t leY t-1

with estimated covariance matrix of the reduced-form residuals:
= [0.0476 0.0013]

0.0013 0.011 7'
As we shall recall from Section 2.1, applying a Choleski
2

lM,t]:GI’

u

decomposition we get that var[u

var[uoy] = 07 = b31 07 covlu  ,u

_ 2
e = bz‘lo'l.Therefore, bz,1

10Y,t]
is equal to
6,  0.0013

b p— p—
21 62 0.047

—0.027

7

and equations (3.29)-(3.30) become
Uppge =10

Ujoy,t = €2t — bz,lgl,t =&, —0.027¢,.
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This means that a shock to & , equal to one-standard deviation

(0.218, that is ¥0.0476) causes an immediate change by 0.218 in

u,, (and thus in y, J); in addition, it will also cause an

immediate increase (albeit very small) of 0.218 X 0.027 = 0.006 in

U, , (and thus in the 10-year Treasury yield) because of the

implicit correlation structure that is admissible under the selected
Choleski scheme. At time ¢ +1, the lagged value of the one-month
yield enters the first equation with a coefficient 0.9819 and thus
after one period the one-month yield will grow by
0.9819x0.218=0.214 (i.e, approximately 21 basis points,
henceforth bps) above what it would have been without the shock.
The ten-year yield would have been 0.9970 X 0.006 = 0.00598
higher because of the effect of its own lag. In addition, the lagged
value of the 1-month yield also enters the second equation with a
coefficient 0.0009, and thus the 10-year Treasury yield will rise by
an additional 0.0009x0.218=0.000196; in total, the 10-year
Treasury yield would be approximately 0.0062 higher with respect
to what it would have been without a shock to the 1-month yield.
Therefore, one period after the one standard deviation shock to the
one-month Treasury yield has occurred, the cumulative response
of the one-month Treasury yield to its own shock would have been
0.218+0.214=0.432, that is, 43 bps. In addition, the accumulated
response of the ten-year Treasury yield to the one standard
deviation shock to the one-month Treasury yield would have been
0.006 + 0.0062 = 0.0123. The process then progresses further
over subsequent rounds of impulse and reaction.

Alternatively, it is easy to see what happens if we give a one

standard deviation shock to ¢,, (equal to 0.105): u,,,

immediately increases by 0.105 (and so does y,,, ), but nothing

happens to u,, . Therefore, at time £ +1 the 10-year yield would

be higher by 0.9970x0.105=0.10469 (i.e., approximately 10 bps)
because of the effect of its own lag (for an accumulated response of
0.209). In addition, the lag of the ten-year yield now affects the 1-
month yield with a coefficient of 0.0209 and therefore the one-
month Treasury yield will be 0.0209 X 0.105 = 0.0022 higher than
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it would have been without a shock happening to the 10-year
Treasury yield.

Figure 3.3 depicts the impulse response functions to a one-
standard deviation shock to the 1-month yield and to the 10-year
yield on the basis of a Choleski triangular scheme that places the
one-month yield at the top of the variable ordering.

Response to Cholesky One S.D. Innovations

Response of 1M Yield to 1M Yield Response of 1M Yield to 10Y Yield

25 25

20 \ 204

154 15 -

10 4 .10

05 - 051

00 . . . . 00 - ; | T
5 10 15 20 5 10 15 20
Response of 10Y Yield to 1M Yield Response of 10Y Yield to 10Y Yield

12 a2

104 .10 -

084 .08 -

06 .06 -

04+ .04 -

02 02

00 T T T T .00 T T T T

5 10 15 20 5 10 15 20

Figure 3.3 - Impulse response functions to shocks to one-month
and ten-year yields, ordered on the basis of a Choleski triangular
scheme that places shocks to the one-month at the top of the
ordering

Notably, as we have seen in Example 3.6, it is not compulsory to
give simple one standard deviation shocks. A researcher is free to
give to the system all kinds of shocks that she is interested in or
that she feels are economically plausible. However, it is quite
common in practice to study the effects of a shock equal to one
standard deviation, especially when the variables have different
scales. Such a rescaling may sometimes give a better picture of the
dynamic relationships among variables because the average scale
of the innovations occurring in a system depends on their standard
deviation.
Summing up, two points should be clear:

* a reduced-form VAR, although commonly employed in
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applied finance, is under-identified and it is not possible to
recover the structural parameters from its estimates unless
we impose some restrictions, i.e., identification forces the
researcher to impose some structure on the system;
= Choleski decompositions provide a minimal set of
restrictions concerning the simultaneous relationships
among variables that can be used to identify the structural
model (however other identification schemes, based on a
theoretical background, are of course possible but appear
to be less common in finance).
It should be also clear that under a Choleski decomposition the
ordering of the variables in the system is important: it is indeed
crucial which of the variables is placed first and which one is
placed second, and so on. In addition, the relevance of the ordering
depends on the magnitude of the correlation coefficients between

the innovations u,, U,,., U, in our example, when

cov[ Uy ¢, Uy ] ~ 0, it must be that b, , = 0, in which case none of the

variables is simultaneously associated and the reduced-form VAR
is practically isomorphic to the structural VAR, so that all standard
shocks are also structural shocks. When the reduced-form shocks
are instead highly correlated, as it is often the case, unfortunately,
the ordering of the variables cannot be determined with statistical
methods but has to be selected by the researcher. Therefore, as
suggested by Sims (1981), it is often warmly suggested that a
researcher tries different orderings of the variables to understand
what are the implications to choose some restrictions instead of
others in terms of the resulting estimates of the IRFs.

Another important issue with IRFs is that they are constructed
using the estimated coefficients. Given that each coefficient is
estimated with uncertainty (due to a variety of factors, such as
small sample sizes and measurement error), the IRFs will contain
sampling error as well, ie, they will be highly nonlinear
transformations of the sample parameter estimates. Therefore, it is
often advisable, after having computed and plotted the IRFs of
interest, to also construct confidence intervals around them to
account for the wuncertainty that derives from parameter
estimation. Although under some assumptions, confidence bands
can be constructed relying on asymptotic theory that implies that
OLS (equal to ML) parameter estimates are normally distributed,
recently it has become common to use bootstrapping methods,
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see the Mathematical and Statistical Appendix at the end of the
book for a brief introduction. The bootstrap is based on resampling
from either the distribution of parameter estimates obtained from
the true, original data (parametric bootstrap), or directly from the
data with replacement to obtain blocks of consecutive observations
(nonparametric bootstrap); in both cases, the final goal is to
generate a large number of alternative pseudo-samples then used
to approximate the distribution of one or more sample statistics of
interest—for instance, the IRFs of a VAR—computed across the
pseudo-samples (see, for instance, Efron and Tibshirani, 1986).
When applied to IRFs, bootstrapping techniques have two major
advantages: first, they produce confidence intervals that are more
reliable than those based on asymptotic theory (see Kilian, 1998);
second, this methodology avoids the computation of exact
expressions for the asymptotic variance of the IRF coefficients,
which is otherwise rather complex (see Liitkepohl, 1991). The
bootstrap method consists in the implementation of the following
steps.

= Each equation is estimated by OLS/MLE and the vector

series {uf} of T errors (with T equal to the original sample

size) is constructed by randomly sampling with
replacement from the estimated residuals. Random
sampling with replacement from an initial dataset means
that T observations are drawn, randomly from the original
sample. After each drawn the observation is replaced in the
sample, so that any observation can be drawn more than
once. Importantly, when drawing the observations, one has
to properly consider the fact that the error terms are
correlated across the equations, which implies that
horizontal blocks of N different structural residuals are
jointly drawn.

= The series {uf} and the estimated coefficients are then
used to construct a pseudo-vector of endogenous variable
series, {yf}.

* The coefficients used to generate {yf} are discarded and

new coefficients are estimated from {yf}. The impulse

response functions are computed from the newly estimated
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coefficients and saved, also indexed by the bootstrap

iteration b.
When this procedure is repeated a sufficiently large number of
times, b = 1, 2, ..., B, the resulting impulse response functions
can be used to construct the confidence bands. As an example, a
95% confidence interval is the one that excludes the highest
and the lowest bootstrapped, re-sampled 5% observations: for
each horizon h = 1, 2, ..., H the lowest (highest) 2.5% IRFs are
excluded, and the interval is set to contain the remaining 95%
IRFs. An impulse response function is considered to be
statistically significant if zero is not included in the
bootstrapped confidence interval.

We are now ready to return to Example 3.4. In case of a positive
shock to the short end of the yield curve (a tightening of
conventional monetary policy), what can we expect to happen to
the rest of the curve, on average? Let us consider the VAR(2) model
estimated in Example 3.4 and compute the IRFs to a one standard
deviation positive shock (equal to approximately 21 bps) to the 1-
month yield. Figure 3.4 shows the responses of each of the
variables in the system over 52 weeks, i.e.,, for h = 1, 2, ..., 52. The

dotted lines represent the 95% bootstrapped confidence intervals.
Response to Cholesky One S.D. Innovations + 2 S.E.
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Figure 3.4 - IRFs to a one standard deviation positive shocks to
the 1-month Treasury yield
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Unsurprisingly, the response of the one-month yield to its own
shock is positive and quite persistent. However, after
approximately 18 weeks such an effect turns negative and
statistically significant. Conversely, the other Treasury yields
display weak or no effects: the responses of the five- and ten-year
yields to the shock are never significant (as zero is always in the
confidence interval, the null hypothesis that the IRF is equal to zero
cannot be rejected). The 1-year yield is mildly positively affected
by the shocks, but after two weeks the response turns negative
(small, but significant). If one takes a one-month U.S. T-bills
positive shock as indicative of a monetary policy tightening, the
figure gives rather attenuated indications of policy transmission to
longer-term riskless rates.

3.2 Variance Decompositions

In Section 2.6, we have discussed how a VAR model can be used in
forecasting. However, irrespective of the actual accuracy of the
predictions, understanding the properties of forecast errors is
helpful in order to assess the interrelationships among the
variables in the system. In (3.99), we have provided the formula to
compute the forecast error for a VAR(1) model. It is possible to re-
formulate such an equation exploiting the VMA representation of
the model, so that the h-step-ahead forecast error is

h-1
u[(h) = yt+b - Et [ywh:' - Z¢ist+b—i ' (3'108)
=0

To help our understanding, we apply (3.109) to the bivariate VAR
model that we have discussed in Section 3.1 and, focusing only on

the series {y1 . } , we note that

uyl(h) =V ™ E|:-V1,r+h|r:' =4,(0e, ., +4, Ve, )y +t0,(h-Ds,
+¢1,2 (0)52,r+h + ¢1,2(1)52,r+h-1 ot ¢1,2 (h- 1)52,r+1

(3.109)

Consequently, if we denote by 6}2/1([]) the h-step-ahead variance of

the forecast of Viiin We obtain:

o (=0, [¢f_1(0) + 2 (D) 4t g2, (B 1)] +o?, [¢f_2(0) + 2, (1) + ot g2, (B 1)]
(3.110)
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Interestingly, because all the coefficients ¢’

are non-negative as
Jk

they are squared, the variance of the forecast error increases as the
forecast horizon h increases.

It is possible to decompose the h-step-ahead forecast error
variance in (3.111) into the proportion due to each of the
(structural) shocks. In particular, the proportion of the forecast

error variance due to the shocks in the sequence {gl t} is

ol [ 42,0+ g7, () +..+ ¢, (h-1)]
0
while the proportion of forecast error variance due to the shocks in

. (3.111)

the sequence {52,f} is

| 42,0+ 47, + ..+ 4, (-1

o, (h)
It is easy to see how this result can be generalized to a VAR
including N variables instead of the two in our example. The
computation of the proportion of the forecast error variance due to
each shock is often referred to as forecast error variance
decomposition. In practice, variance decompositions determine

how much of the h-step-ahead forecast error variance of a given
variable is explained by innovations to each explanatory variable

for A=1,2,.... For instance, in our bi-variate example, if the g,

(3.112)

shocks explain none of the forecast variance of y, , at all forecast

horizons, we would say that the series {yl t} is exogenous, that is,
it evolves independently of the &, shocks and of the {yzrt}

sequence. Conversely, if &, shocks explain all the forecast

2,t
variance of {y1 t} at all forecast horizons, then {y1 t} is said to be

completely endogenous. In most practical applications, it is
common for &, (&,,) to explain most of the forecast variance of

Y., (7,,) atshort-term horizons, while the importance of shocks

to y,, (y1 t) on the forecast variance of Vi, (th) grows with

the forecast horizon.
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Importantly, like in IRF analysis, forecast error variance
decompositions of reduced-form VARs require identification
(because otherwise we would be unable to go from the coefficients
in @ to their counterparts in dDI_), therefore, Choleski

decompositions (or other restriction schemes) are typically
imposed. As we shall recall from Section 3.1, in the bivariate model
examined in this section, this means that all the one-period

forecast error variance of y is attributed to ¢, ,. It is important

to emphasize again that assuming a particular ordering is
necessary to compute the impulse responses and variance
decompositions from a VAR, although the restrictions underlying
the ordering used may not be supported by the data because they
may be decided by the researcher on an a-priori basis. As already
discussed in the case of IRFs, when possible economic theory
should give some guidance on what is a plausible ordering of the
variables (i.e., to point out that when the movement in a variable is
likely to temporally precede rather than follow the movements by
the other variables this variable should be placed at the top of the
ordering). Once more, however, the lower the pairwise cross-
correlations among the errors are, the weaker the impact of the
ordering on the results.

In conclusion, forecast error variance decomposition and impulse
response function analyses both entail similar information from
the time series under analysis and are often used in combination
(such a combined approach is called innovation accounting) to
uncover the dynamic interrelationships among the endogenous
variables.

We present the variance decompositions for the forecast error
variance of the one-month, one-, five-, and ten-year Treasury yields
from the VAR(2) estimated in Example 3.4 at forecast horizons
between 1 and 12 weeks. In particular, panel (a) of Table 3.7 shows
in which proportion the innovations to each variable in the system
contribute to the forecast error variance of the one-month T-bill
yield at different horizons. The variance decompositions of the
one-year, five-year and ten-year Treasury yields can be found in
panels (b), (c), and (d), respectively.
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Variance Decomposition of 1M Yield:

Period S.E. 1IMYield 1Y Yield 5Y Yield 10Y Yield
1 0.207 100.000 0.000 0.000 0.000
2 0.275 99.897 0.061 0.039 0.003
3 0.315 99.377 0.504 0.110 0.008
4 0.340 98.241 1.544 0.199 0.016
5 0.359 96.425 3.254 0.299 0.022
6 0.373 93.943 5.625 0.405 0.027
7 0.386 90.867 8.591 0.512 0.030
8 0.398 87.309 12.045 0.615 0.031
9 0.409 83.405 15.854 0.710 0.030
10 0.421 79.300 19.879 0.793 0.029
11 0.433 75.127 23.985 0.861 0.027
12 0.445 70.998 28.060 0.915 0.028

Panel (a)

Variance Decomposition of 1Y Yield:

Period S.E. 1M Yield 1Y Yield 5YYield 10Y Yield
1 0.079 0.348 99.652 0.000 0.000
2 0.126 0.784 99.110 0.092 0.015
3 0.164 0.609 99.201 0.153 0.037
4 0.197 0.425 99.325 0.188 0.063
5 0.226 0.358 99.341 0.210 0.091
6 0.254 0.406 99.244 0.228 0.122
7 0.280 0.543 99.057 0.243 0.156
8 0.304 0.741 98.806 0.258 0.195
9 0.328 0.978 98.512 0.274 0.236
10 0.351 1.237 98.191 0.291 0.282
11 0.373 1.506 97.855 0.308 0.330
12 0.394 1.778 97.513 0.328 0.382

Panel (b)
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Variance Decomposition of 5Y Yield:

Period S.E. 1IMYield 1Y Yield 5Y Yield 10Y Yield
1 0.106 0.261 53.622 46.117 0.000
2 0.166 0.391 53.547 46.045 0.017
3 0.212 0.341 53.959 45.674 0.026
4 0.251 0.267 54.526 45.180 0.027
5 0.284 0.209 55.120 44.646 0.025
6 0.314 0.174 55.695 44.109 0.022
7 0.341 0.158 56.235 43.588 0.019
8 0.366 0.159 56.737 43.087 0.017
9 0.390 0.173 57.200 42.612 0.015
10 0.412 0.197 57.629 42.161 0.013
11 0.433 0.227 58.026 41.735 0.012
12 0.454 0.263 58.393 41.333 0.011

Panel (c)

Variance Decomposition of 10Y Yield:

Period S.E. 1M Yield 1Y Yield 5YYield 10Y Yield
1 0.101 0.260 37.242 51.653 10.845
2 0.158 0.306 36.977 52.897 9.820
3 0.202 0.285 37.053 53.316 9.345
4 0.237 0.253 37.265 53.389 9.093
5 0.268 0.221 37.527 53.311 8.941
6 0.296 0.194 37.805 53.163 8.839
7 0.321 0.170 38.086 52.981 8.763
8 0.344 0.150 38.363 52.784 8.703
9 0.365 0.134 38.633 52.580 8.653
10 0.385 0.120 38.896 52.375 8.608
11 0.404 0.109 39.151 52.171 8.568
12 0.422 0.100 39.399 51.971 8.530

Panel (d)

Table 3.7 - Forecast error variance decomposition of one-month,
one-, five-, ten-year Treasury yields when the Choleski ordering is
one-month, one-, five-, ten-year yields
Notably, the forecast error variance of the one-month yield at a
one-week horizon is entirely explained by its own innovations. By
construction, this derives from the specific Choleski
triangularization that entails placing the one-month yield on the
top of the ordering. However, even at a forecast horizon of 12
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weeks, the own innovations continue to contribute as much as 70%
of the forecast variance of the one-month yield.

Interestingly, the movements in the ten-year yield seem to explain
little of the forecast error variance of the other riskless yield series
and even of its own error variance. However, in order to
understand why the ordering of the variable is often crucial, Table
3.8 shows how the variance decomposition of the ten-year yield
changes when the ten-year yield is placed at the top of the ordering
in a different Choleski identification scheme.

Variance Decomposition of 10Y Yield

Period S.E. 10Y Yield 1M Yield 1Y Yield 5Y Yield
1 0.101 100.000 0.000 0.000 0.000
2 0.158 99.939 0.003 0.001 0.057
3 0.202 99.902 0.002 0.001 0.096
4 0.237 99.879 0.004 0.001 0.116
5 0.268 99.860 0.010 0.005 0.125
6 0.296 99.840 0.020 0.010 0.130
7 0.321 99.818 0.032 0.018 0.132
8 0.344 99.794 0.047 0.027 0.132
9 0.365 99.767 0.063 0.039 0.132
10 0.385 99.738 0.079 0.051 0.132
11 0.404 99.707 0.097 0.065 0.131
12 0.422 99.676 0.115 0.080 0.130

Table 3.8 - Forecast error variance decomposition of the ten-year
Treasury yields (ten-year yield on the top of the Choleski ordering)

Under this new ordering, most of the forecast error variance at all
the 12 horizons considered is explained by its own ten-year yield
innovations. Indeed, the estimated correlation coefficients among
the innovations of the variables in the VAR(2) are:

M| 1 0.051 0.051 0.050

1Y ]0.051 1 0.734 0.612

5Y |10.051 0.734 1 0.938

10Y [0.050 0.612 0.938 1

Interestingly, the correlation between the innovations to ten-year
and the five-year yields is very close to one, while for a few
additional pairs of reduced-form yield residuals display substantial
correlations. As we have learned, when correlation coefficients
between the innovation are high, the ordering that a researcher
selects to achieve identification may be of crucial importance.

ﬁ:




Definition 3.5.
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3.3 Granger Causality

Another tool that is useful in order to investigate the dynamic
relationships among the variables in a VAR system is Granger
causality (see Granger, 1969a). Formally, the definition of Granger
causality is as follows.

(Granger Causality) Let J, be the information set containing all
the relevant information available up to and including time ¢t. In
addition, let yt(]]|5t) be the optimal (minimum MSFE) h-step-

ahead prediction of the process {yt} at the forecast origin t, based
on the information set 3J,. The vector time series process {Xt} is

said to (Granger-) cause {yt} in a Granger sense if and only

i MSE , (113, )< MSE,, (h]3,\{x,|s <t}).

Alternatively, it is possible to define Granger causality using “its
complement” (or lack thereof), i.e., {Xt} does not cause {yt} in a
Granger sense at horizon h, if taking into account present and past

values of {xt} does not improve the accuracy of the h-step ahead
prediction of the future realizations of{yt}. Finally, if and only if
{Xt} causes {yt} and {yt} causes {Xt}, then the joint process
{x' oY, }' is said to represent a feedback system.

Notably, because the information set 3 ; of all the existent relevant

information is rarely available to the forecaster, the optimal

~

prediction given 3, cannot be determined. Therefore, instead of

considering the entire set St, we only consider the information in

the past and present values of the process under examination. In
addition, instead of comparing optimal predictors, we compare the
optimal linear predictors that we have discussed in Section 2.6.
Therefore, we can re-write Definition 3.5 as follows.

(Granger Causality - Restricted) Let y, (b | {xs,ys |s < t}) be the

optimal linear (minimum MSFE) h-step-ahead prediction function
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of the process {yt} at the forecast origin t, based on the

information {Xs,ys |5£t}. The process {Xt} is said to Granger

cause {y t} if

MSFE(E[y¢lxe_1, X2 Vi1, ¥e-2,---1) <
MSFE(E[y Y1, Yt-2,---1)

Notably, Granger causality is different from exogeneity: indeed, for
y, to be exogenous it is required that it is not affected by the

contemporaneous value of x , while Granger causality refers to the

effects of the past values of {x [} on the current value of y, .

In order to discuss the Granger causal relationship among the
variables in a VAR system, let us go back to our bivariate example,
and, in particular, to its VMA representation:

{ Y1t } _ |:ILL_Li| N i|:el,l(i) 91,2(i) “:ul,ti } . (3113)
You Hy i=0 ‘92,1(i) ‘92,2(i) Uy

It can be proven (see Liitkepohl, 2005), that

yl,t(ll{yl,s’yz,s |5St})=y1,t(1|{y1,s |SS[‘}) < 6,,(1)=0

for /=1,2,... In addition, equality of the one-step-ahead predictors
implies the equality of the h-step-ahead predictors, for A=2,3,....

Therefore, the fact that @

1‘2(1.):0, for 7=1,2,.. provides a

necessary and sufficient condition for y, = not being caused

by y,, in a Granger sense. Therefore, the lack of Granger causality

can be easily verified from the VMA representation of the model. In
addition, it is worthwhile noting that for a stationary, stable
VAR(p) process

{yl,t}_[ai,o} I W {ym} Qi B || Yier {un}

= + +.o.t +

yz,t a‘2,0 a2,1(1) a'2,2(1) y2,l—1 a2,1(p) aZ,Z(p) y2,t—p u2,t
(3.115)

the condition in (3.115) is satisfied if and only if a5 =0 for

i =1, 2,.., p.This implies that the lack of causality can be assessed
simply by looking at the representation of the VAR in its standard
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form. This means that in this context, the lack of Granger causality
can be easily verified by performing a standard F-test (like the one
discussed in Chapter 1) of the restriction

a a =450, =0.

A multivariate generalization of Granger causality leads to block-
exogeneity tests (or block-causality tests, a slightly more precise
definition) which are useful to check whether adding a variable
into a VAR may increase the accuracy of the forecasts produced by
the model. In other words, the test aims at verifying whether one

variable, call it Y., Granger causes any other variables in the

1200) ~ G1202) "

system, that is, whether taking into account the lagged value of
Y .. helps forecasting any of the other variables in the VAR.

From a practical point of view, block-causality tests simply consist
of likelihood ratio tests like the one discussed in Section 2.5:

(7 —m)(In|£7|-|22|) (3.116)
where if is the covariance matrix of the residuals from a model
that has been restricted to have all the coefficients of the lags of the
variable y . setto zero and ig is the residual covariance matrix

of the unrestricted model. For instance, let us consider a tri-variate
VAR(1) model

Yit a, &, &, a;| i Uy
y2,l = a‘Z,O + a2’1 a2]2 a2,3 yz‘t_]_ + u2,t . (3.117)
Yai ., Ay A, A3 || Yo Us

Suppose that we want to test whether y, Granger causes either

Y,, or y,  .Inpractice, we need to test the restricted model

Yit a, a, a, 0 Yita Uy,
y2,t = a2,0 + a211 agyg 0 y2,t—l + u2,t I(3118)
Yai a0 Ay A, 5| Vo Us ¢

vs. the unrestricted model in (3.118) using a LR test. Failure to
reject the null hypothesis that the restricted model is sufficient to
fit the data (that is, if the calculated value of the statistic is less than

the critical value of the y* at a pre-specified size level) means that

V., Granger does not Granger causes any of the other two
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variables in the system. Of course, additional tests may be
implemented to separately test whether y,,k Granger causes y, ,

Voo OF both.

To conclude the analysis of the VAR(2) model for the one-month,
one-, five-, and ten-year Treasury yields that we have estimated in
previous examples, we test Granger causality for all the variables in
the model. In particular, Table 3.9 considers one dependent
variable at a time and tests whether the lags of each of the other
variables help to predict it. In other words, in this case, the chi-
square statistics refer to a test in which the null is that the lagged
coefficients of the “excluded” variable are equal to zero (i.e., the
“excluded” variable does not help to forecast the selected

dependent variable).
Dependent variable: 1M Yield Dependent variable: 1Y Yield
Excluded Chi-sq df Prob. Excluded Chi-sq df Prob.
1Y Yield 102.054 2 0.000 1M Yield 33.950 2 0.000
5Y Yield 4.965 2 0.084 5Y Yield 3.236 2 0.198
10Y Yield 1.309 2 0.520 10Y Yield 2.714 2 0.257
All 180.123 6 0.000 All 43.161 6 0.000
Panel (a) Panel(b)
Dependent variable: 5Y Yield Dependent variable:10Y Yield
Excluded Chi-sq df Prob. Excluded Chi-sq df Prob.
1M Yield 5.630 2 0.060 1M Yield 0.940 2 0.625
1Y Yield 3.976 2 0.137 1Y Yield 1.638 2 0.441
10Y Yield 1.238 2 0.539 5Y Yield 2.051 2 0.359
All 7.535 6 0.274 All 4.579 6 0.599
Panel (c) Panel (d)

<INSERT TABLE 3.9 HERE>
Table 3.9 - Granger causality tests

Notably, the only lead-lag interactions that seem to be significant at
conventional size levels are the following:
» the one-year yield (and five-year yield, at 10% confidence
level) Granger causes the 1-month yield;
» the one-month yield Granger causes the one-year and the
five-year yields.
Therefore, there is a feedback effect (or two-way causality)
between one-month and one-year Treasury yields; the five-year
yield and the one-month yield form a feedback system using a p-
value of 0.10.




3.Vector Autoregressive Moving Average (VARMA) Models

4- Vector Moving Average and Vector Autoregressive
Moving Average Models

4.1 Vector Moving Average Models

Although less common in financial applications, a researcher could
also specify a vector moving average (VMA) model,
Yi=p+u +0Ou_, +0u ,+.+0u_. . (3.119)

] . . . .
where y, = [yl,tyzlt...y,('t} , U, is a zero-mean multivariate white
noise  with  non-singular  covariance ~matrix X and

Y7, =[,ul,uz...,u1(]' is the mean vector of y, . It is possible to verify

that, exactly as a VAR has an infinite VMA representation, a VMA
model potentially has an infinite-order VAR representation. For
concreteness, let us consider a VMA(1) model with zero mean (i.e.,

p=0):

Yy, =u,+0mu,,. (3.120)
It follows that

u =y, —0u,,, (3.121)
and thus

U =Y — O ,. (3.122)
Therefore, we can rewrite (3.121) as

Y =U +®l(yt—1_®lut—2)' (3.123)
By iterative substitution we eventually show that

Yo ==>.(-0,)y. +u,, (3.124)

i=1
which is the infinite-order VAR representation of the process. Note
that this is only potentially infinite, because it may be that (—91)i

may be equal to zero for some i greater than some finite number p,
so that the VAR representation may in fact turn out to be of finite

order p. For this representation to be meaningful, 9{ must

approach zero as i approaches to infinity, which requires that the
eigenvalues of ©, are less than one in modulus, that is:

det(l, —(-O,)z)=det(I, +©,z)#0,forz€C, |z|<1. (3.125)

This is the same condition that we have discussed for the stability
of a VAR(1) model.
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In general, a VMA(q) process similar to the one in (3.120) with
=0 has a pure VAR representation,

Y = ZHiyt—i +&, (3.126)

i1
if det(lK +®1z+...+®qzq)¢0, forz €C, |z|<1.SuchaVMA(q) is

said to be invertible.

We can also examine the first and second moments of a VMA(q). As
the multivariate white noise €, has zero mean vector, the mean of

y, is simply the vector uz[,ul,,uz...,,uN]. For the sake of

simplicity, in what follows we assume p=0. The autocovariance
matrices are then

g-h
r(h)=E(yy'y)=).0,,%,0", for 1=0,1,.,q (3.127)
i=0

and O for A>gq. Clearly, I'(0) is simply the covariance matrix of

the series.

Unlikely VAR models, VMA processes can never be simply
estimated equation by equation by OLS. One way to estimate them
is the maximum likelihood approach, more precisely by a

maximum conditional-likelihood (that assumes u, to be equal to

zero for ¢ <0) or alternatively by exact-likelihood (that treats u,

for £+ <0 as additional parameters of the model). However, a
detailed review of these methods is out of the scope of this book.
The interested Reader can find a treatment in Liitkepohl (2005).

4.2 Vector Autoregressive Moving Average Models

For the sake of completeness, we finally introduce vector
autoregressive moving average (VARMA) processes, that are VAR
models that are allowed to include finite order MA process. The
general form of a VARMA(p,q) process with VAR order p and MA
order q is

Yi=a,+tAY+ . +AY ,+U +0u , +Ou, ,+..+Ou,_,
where u; is a white noise process with non-singular covariance

matrix Zu .
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A little bit of algebraic manipulation may be worthy in order to
better understand the nature of this process. Let us now define v,
such as

v =u+0Ou ,;+0O,u ,+..+0Ou . (3.129)
If we substitute (3.130) into (3.129), we obtain:

Y= +AY  +t ALY, Y (3.130)

If this process is stable, that is, if dEt(IK +AZ +...+Apz”) #0 for

| z|<1, it is also stationary and can be re-written in its infinite VMA
representation as

0

Yo =n+2 Do =p+) Ou,, (3.131)

i=0 i=0
that is, a pure VMA process where p = (IK -A .- Ap )71 a,.

Again, to compute the autocovariance matrices of a VARMA model,
we will assume that p=0 to simplify the algebra; then we post-

multiply (3.131) by y', , and taking its expectation, we have
Elyy o ]=AEY LY ]+ A AEY Y o ]+ E[uy ' ]+ O E[uy ]+

given that E[u,,y'|=0O for any s<t¢. Hence, for #>¢g we can
show that:

rh)y=Arh-19+..+A rh-p). (3.133)
If p>qg and TI(0),.... I'(p—1) are known, the relationship in
(3.134) can be used to compute the autocovariance matrices
recursively from A= p, p+1,... .

Noticeably, as for the VMA model, also a VARMA model cannot be
simply estimated by OLS, but it requires maximum likelihood
estimation. The interested Reader may find more details about the
estimation of VARMA models in Liitkepohl (2005).
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